c0, l1 and l∞ in Function Spaces
dc.contributor.author | Cembranos, Pilar | |
dc.date.accessioned | 2023-06-20T17:24:22Z | |
dc.date.available | 2023-06-20T17:24:22Z | |
dc.date.issued | 1997 | |
dc.description.abstract | Since the birth of Banach space theory, it has been an important goal to know how are the subspaces of a given Banach space. An interesting part of that study has been focused in the search of criteria for a Banach space to have any of the classical sequence spaces as a subspace. Several deep results have revealed how the presence (or the absence) of such subspaces provides a very good insight in the internal structure of the Banach spaces involved. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación y Ciencia | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/78131 | |
dc.identifier.issn | 0213-8743 | |
dc.identifier.relatedurl | https://matematicas.unex.es/~extracta/Extracta_Published_volumes.html#12-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58203 | |
dc.issue.number | 2 | |
dc.journal.title | Extracta Mathematicae | |
dc.language.iso | eng | |
dc.page.final | 134 | |
dc.page.initial | 129 | |
dc.publisher | Universidad de Extremadura, Departamento de Matemáticas | |
dc.relation.projectID | PB94-0243 | |
dc.rights | Atribución-NoComercial 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/es/ | |
dc.subject.cdu | 517.982.2 | |
dc.subject.keyword | Spaces of vector valued functions | |
dc.subject.keyword | Normed linear spaces | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | c0, l1 and l∞ in Function Spaces | |
dc.type | journal article | |
dc.volume.number | 12 | |
dcterms.references | [1] BOMBAL, F., HERNANDO, B., On the injection of a Kothe function space into Li(/z), Annul. Soc. Math. Polon. Serial: Commentationes Math., 25 (1995), 49-60. [2] BOURGAIN, J., The Komlos theorem for vector valued functions, unpublished (1979). [3] FAKHOURY, H., Selections lineaires associees au Theoreme de Hahn-Banch, J. Fund. Anal., 11 (1972), 436-452. [4] Godefroy, G., Kalton, N.J., SAPHAR, P.D., Unconditional ideals in Banach spaces, Studia Math., 104 (1993), 13-59. [5] HENSGEN, W., Some properties of the vector-valued Banach ideal space E(X) derived from those of E and X, Colledanea Math., 43 (1992), 1-13. [6] KADEC, M.I., PELCZYNSKI, A., Bases, lacunary sequences and complemented subspaces in the spaces Lp, Studia Math., 21 (1962), 1-13. [7] KALTON, N.J., Locally complemented subspaces and £p-spaces for 0 < p < 1, Math. Nachr., 115 (1984), 71-97. [8] MENDOZA, J., Copies of Classical Sequences Spaces in Vector-Valued Function Banach Spaces, in “Function Spaces the Second Conference”, Lecture Notes in Pure and Applied Mathematics (K. Jarosz, ed.), Vol. 172, Marcel Dekker, 1995, 311-320. [9] RAYNAUD, Y., Sur les sous-espaces de Lp(Lq), in “Seminaire d’Analyse Fonctionelle 1984/85”, Publ. Math. Univ. Paris VII, 26, Univ. Paris VII, Paris, 1986, 49-71. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1