Aplicación de machine learning a la definición de zonas vulnerables a contaminación por nitratos en la Cuenca Hidrográfica del Tajo (España)
Loading...
Official URL
Full text at PDC
Publication date
2023
Defense date
2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En respuesta a la extendida problemática de contaminación por nitratos presente en la Cuenca Hidrográfica del Tajo, se propone una alternativa innovadora utilizando de técnicas de machine learning para acotar las zonas más problemáticas y definir nuevas posibles no identificadas previamente y necesarias para realizar una buena gestión de la cuenca. El estudio se basa en el estudio de la variable objetivo: alta concentración de nitratos y se definen las siguientes variables explicativas a analizar: geología, pendientes, precipitaciones, cercanía a siete tipos de uso del suelo diferentes, edafología y espesor de la zona no saturada.
En la simulación se obtienen como resultado las zonas vulnerables (Z.V.) ya definidas además de una nueva zona: la Z.V. Buendía. El estudio muestra la necesidad de revisar las zonas definidas y plantear la posibilidad de extender el uso de esta técnica novedosa como herramienta útil para la identificación y definición de zonas vulnerables. El uso de machine learning permite alcanzar resultados óptimos rápidamente y con una eficacia considerable. El uso de esta herramienta es especialmente útil en lugares donde la disponibilidad de datos es escasa y en proyectos con presupuesto limitados que demandan unos resultados inmediatos como ocurre en el ámbito de la contaminación de los recursos hídricos.