Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Arrayed waveguide grating based on group-index modification

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorCalvo Padilla, María Luisa
dc.contributor.authorCheben, Pavel
dc.contributor.authorJanz, Siegfried
dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.contributor.authorXu, Dan-Xia
dc.contributor.authorDelâge, André
dc.date.accessioned2023-06-20T10:41:56Z
dc.date.available2023-06-20T10:41:56Z
dc.date.issued2006-03
dc.description© 2006 IEEE. Iberoamerican Meeting on Optics (RIAO)/ Latin American Meeting on Optics, Lasers, and Their Applications (OPTILAS) (5ª / 8ª. 2004. Porlamar, Venezuela). This work was supported by the Spanish Ministry of Science and Technology under project TIC2002-1846 and the National Research Council of Canada. Preliminary partial results were presented at the V Ibero-American Optics Meeting (RIAO) and VIII OPTILAS, October 2–8, 2004, Porlamar, Venezuela.
dc.description.abstractThe authors propose a new wavelength-dispersive principle based on waveguide group-index modification and apply this principle in a new type of arrayed waveguide dispersive element based on modified group index. The element is composed by an array of waveguides consisting of two sections with different group indexes. We deduce the applicable dispersion formula and demonstrate that the group-index modification can be used for controlling or enhancing device wavelength dispersion. Two device examples are provided. First, dispersive properties of a waveguide array with silicon on insulator (SOI) straight waveguides with group index modified by waveguide widening are calculated. Then, the authors show that by placing the element with modified group index in a phased array of a conventional arrayed waveguide grating (AWG) device, the dispersive properties of the AWG are markedly enhanced. Dispersion-enhancement factor of up to 60 is calculated for a compact demultiplexer designed for SOI platform with group index modified by photonic-bandgap effect.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología, España
dc.description.sponsorshipNational Research Council of Canada
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25220
dc.identifier.doi10.1109/JLT.2005.863303
dc.identifier.issn0733-8724
dc.identifier.officialurlhttp://dx.doi.org/10.1109/JLT.2005.863303
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51023
dc.issue.number3
dc.journal.titleJournal of Lightwave Technology
dc.language.isoeng
dc.page.final1557
dc.page.initial1551
dc.publisherIEEE - Inst. Electrical Electronics Engineers Inc.
dc.relation.projectIDTIC2002-1846
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSilicon-On-Insulator
dc.subject.keywordDesign
dc.subject.keywordDemultiplexers
dc.subject.keywordBirefringence
dc.subject.keywordFabrication
dc.subject.keywordChallenges
dc.subject.keywordManagement
dc.subject.keywordDevices
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleArrayed waveguide grating based on group-index modification
dc.typejournal article
dc.volume.number24
dcterms.references1. J. Y. Wei, "Advances in the management and control of optical internet", IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp.768 -785 2002 2. J. Zhang and B. Mukherjee, "A review of fault management in WDM mesh networks: Basic concepts and research challenges", IEEE Network, vol. 18, no. 2, pp.41 -48 2004 3. M. K. Smit and C. van Dam, "PHASAR-based WDM devices: Principles, design, and application", IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp.236 -250 1996 4. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Del&acirc,ge, K. Dossou, L. Erickson, M. Gao, P. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, "Planar waveguide echelle gratings in silica-on-silicon", IEEE Photon Technol. Lett., vol. 16, no. 2, pp.503 -505 2004 5. J.-J. He, B. Lamontgne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, "Monolitic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP", J. Lightw. Technol., vol. 16, no. 4, pp.631 -638 1998 6. V. I. Tolstikhin, A. Densmore, K. Pimenov, Y. Logvin, S. Laframboise, and S. Grabtchak, "Monolithically integrated optical channel monitor for DWDM transmission systems", J. Lightw. Technol., vol. 22, no. 1, pp.146 -153 2004 7. S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Del&acirc,ge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, and S. Charbonneau, "Planar waveguide echelle gratings: An embeddable diffractive elements for photonics integrated circuits", Proc. Optical Fiber Communication Conf., OSA Tech. Dig., vol. 70, pp.69 -70 2002 8. R. R. Whiteman, A. P. Knights, D. George, I. E. Day, A. Vonsovici, A. A. House, G. F. Hopper, and M. Asghari, "Recent progress in the design, simulation and fabrication of small cross-section silicon-on-insulator VOAs", Proc. SPIE, Photonocs West, vol. 4997, pp.146 -156 2003 9. L. Pavesi and D. J. Lockwood, Silicon Photonics, 2004 :Springer-Verlag 10. G. T. Reed and A. P. Knights, Silicon Photonics&mdash,An Introduction, 2004 :Wiley 11. P. Cheben, D.-X. Xu, S. Janz, and A. Del&acirc,ge, J. F. Lopez, J. A. Montiel-Nelson, and D. Pavlidis, "Scaling down photonic waveguide devices on the SOI platform", Proc. SPIE, vol. 5117, pp.147 -156 2003 12. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip", Opt. Lett., vol. 29, no. 20, pp.2387 -2389 2004 13. M. R. T. Pearson, A. Bezinger, A. Del&acirc,ge, J. W. Fraser, S. Janz, P. E. Jessop, and D.-X. Xu, "Arrayed waveguide grating demultiplexers in silicon-on-insulator", Proc. SPIE, vol. 3953, pp.11 -18 2000 14. S. Janz, "Silicon-based waveguide technology for wavelength division multiplexing", Silicon Photonics, 2004: Springer-Verlag 15. T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides", Jpn. J. Appl. Phys., vol. 43, no. 5B, pp.L673 -L675 2004 16. K. Sasaki, F. Ohno, and A. Motegi, "Arrayed waveguide grating of $70 \times 60\ \mu\hbox{m}^{2}$ size based on Si photonic wire waveguides", Electron. Lett., vol. 41, no. 14, pp.801 -802 2005 17. Y. Kawakita, T. Saitoh, S. Shimotaya, and K. Shimomura, "A novel straight waveguide grating with linearly varying refractive-index distribution", IEEE Photon. Technol. Lett., vol. 16, no. 1, pp.144 -146 2004 18. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating", Opt. Lett., vol. 30, no. 14, pp.1824 -1826 2005 19. H. A. Rowland, "Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes", Phil. Mag., vol. 13, pp.469 -474 1882 20. H. A. Rowland, The Physical Papers of Henri August Rowland, pp.487 -491 1902 :The Johns Hopkins Univ. Press 21. P. Cheben, A. Bogdanov, A. Del&acirc,ge, S. Janz, B. Lamontagne, M. J. Picard, E. Post, and D.-X. Xu, "A 100-channel near-infrared SOI waveguide microspectrometer: Design and fabrication challenges", Proc. SPIE, vol. 5644, pp.103 -110 2005 22. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Mildbrodt, "Broad-band array multiplexers made with silica waveguides on silicon", J. Lightw. Technol., vol. 11, no. 2, pp.212 -219 1993 23. D.-X. Xu, P. Cheben, D. Dalacu, A. Del&acirc,ge, S. Janz, B. Lamontagne, M.-J. Picard, and W. N. Ye, "Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress", Opt. Lett., vol. 29, no. 20, pp.2384 -2386 2004 24. P. Cheben, D.-X. Xu, S. Janz, A. Del&acirc,ge, and D. Dalacu, "Birefringence compensation in silicon-on-insulator planar waveguide demultiplexers using a buried oxide layer", Proc. SPIE, vol. 4997, pp.181 -189 2003 25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slab", Phys. Rev. Lett., vol. 87, no. 25, pp.253902-1 -253902-4 2001
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos20.pdf
Size:
350.12 KB
Format:
Adobe Portable Document Format

Collections