Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Homogeneous orthogonally additive polynomials on Banach lattices

dc.contributor.authorLlavona, José G.
dc.contributor.authorBenyamini, Yoav
dc.contributor.authorLassalle, Silvia
dc.date.accessioned2023-06-20T09:37:16Z
dc.date.available2023-06-20T09:37:16Z
dc.date.issued2006
dc.description.abstractThe main result in this paper is a representation theorem for homogeneous orthogonally additive polynomials on Banach lattices. The representation theorem is used to study the linear span of the set of zeros of homogeneous real-valued orthogonally additive polynomials. It is shown that in certain lattices every element can be represented as the sum of two or three zeros or, at least, can be approximated by such sums. It is also indicated how these results can be used to study weak topologies induced by orthogonally additive polynomials on Banach lattices.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipTechnion Fund for the Promotion of Research
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15921
dc.identifier.doi10.1112/S0024609306018364
dc.identifier.issn0024-6093
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayFulltext?type=1&fid=441310&jid=BLM&volumeId=38&issueId=03&aid=441309&bodyId=&membershipNumber=&societyETOCSession=
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50049
dc.journal.titleBulletin of the London Mathematical Society
dc.language.isoeng
dc.page.final469
dc.page.initial459
dc.publisherOxford University Press
dc.relation.projectIDUBACyT X108
dc.relation.projectIDPICT03-15033
dc.relation.projectIDBFM2000-0609
dc.rights.accessRightsrestricted access
dc.subject.cdu517.5
dc.subject.keywordOrthogonally additive polynomials
dc.subject.keywordBanach lattices
dc.subject.keywordWeak polynomial convergence
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleHomogeneous orthogonally additive polynomials on Banach lattices
dc.typejournal article
dc.volume.number38
dcterms.referencesR. Aron, C. Boyd, R. Ryan and I. Zalduendo, ‘Zeros of polynomials on Banach spaces: The real story’, Positivity 7 (2003) 285–295. R. Aron, R. Gonzalo and A. Zagorodnyuk, ‘Zeros of real polynomials’, Linear and multilinear algebra 48 (2000) 107–115. T. K. Carne, B. Cole and T. W. Gamelin, ‘A uniform algebra of analytic functions on a Banach space’, Trans. Amer. Math. Soc. 314 (1989) 639–659. S. Dineen, Complex analysis on infinite dimensional spaces, Springer Monogr. Math. (Springer, 1999). L. Drewnowski and W. Orlicz, ‘On representation of orthogonally additive functionals’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 17 (1969) 167–173. N. Friedman and M. Katz, ‘Additive functionals on Lp spaces’, Canad. J. Math 18 (1966) 1264–1271. M. I. Garrido, J. A. Jaramillo and J. G. lavona, ‘Polynomial topologies on a Banach space’, Topology Appl. 153 (2005) 854–867. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space sampler (Cambridge University Press, 1984). S. Lassalle and J. G. Llavona, ‘Weak-polynomial convergence on spaces _p and Lp ’, Positivity 8 (2004) 283–296. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II (Springer, 1977). M. Marcus and V. J. Mizel, ‘Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces’, Trans. Amer. Math. Soc. 228 (1977) 1–45. V. J. Mizel and K. Sundaresan, ‘Representation of vector valued nonlinear functions’, Trans. Amer. Math. Soc. 159 (1971) 111–127. J. Mujica, Complex analysis in Banach spaces, Math. Studies 120 (North-Holland, Amsterdam, 1986). I. P. Natanson, Theory of functions of a real variable, vol. II (Frederick Ungar Publishing Co., New York, 1960). A. Pelczynski, ‘On weakly compact polynomial operators on B-spaces with Dunford-Pettis property’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963) 371–378. A. Pelczynski, ‘A theorem of Dunford–Pettis type for polynomial operators’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963) 379–386. D. Pérez-García and I. Villanueva, ‘Orthogonally additive polynomials on spaces of continuous functions’, J. Math. Anal. Appl. 306 (2005) 97–105. A. G. Pinsker, ‘Sur une fonctionnelle dans l’espace de Hilbert’, Dokl. Acad. USSR (N.S.) 20 (1938) 411–414. W. Rudin, Functional analysis (McGraw-Hill, 1973). K. Sundaresan, ‘Geometry of spaces of homogeneous polynomials on Banach lattices’, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4 (Amer. Math. Soc., Providence, RI, 1991) 571–586.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLlavona05.pdf
Size:
158.9 KB
Format:
Adobe Portable Document Format

Collections