Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Mechanical conditions for stable symmetric cell constriction

dc.contributor.authorBeltrán De Heredia Rodríguez, Elena
dc.contributor.authorMonroy, Francisco
dc.contributor.authorCao García, Francisco Javier
dc.date.accessioned2024-05-28T09:40:26Z
dc.date.available2024-05-28T09:40:26Z
dc.date.issued2019-11-21
dc.description.abstractCell constriction is a decisive step for division in many cells. However, its physical pathway remains poorly understood, calling for a quantitative analysis of the forces required in different cytokinetic scenarios. Using a model cell composed by a flexible membrane (actin cortex and cell membrane) that encloses the cytoplasm, we study the mechanical conditions necessary for stable symmetric constriction under radial equatorial forces using analytical and numerical methods. We deduce that stable symmetric constriction requires positive effective spontaneous curvature, while spontaneous constriction requires a spontaneous curvature higher than the characteristic inverse cell size. Surface tension reduction (for example by actin cortex growth and membrane trafficking) increases the stability and spontaneity of cellular constriction. A reduction of external pressure also increases stability and spontaneity. Cells with prolate lobes (elongated cells) require lower stabilization forces than oblate-shaped cells (discocytes). We also show that the stability and spontaneity of symmetric constriction increase as constriction progresses. Our quantitative results settle the physical requirements for stable cytokinesis, defining a quantitative framework to analyze the mechanical role of the different constriction machinery and cytokinetic pathways found in real cells, so contributing to a deeper quantitative understanding of the physical mechanism of the cell division process.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGerman Research Foundation
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationBeltrán-Heredia, E., Monroy, F., & Cao-García, F. J. (2019). Mechanical conditions for stable symmetric cell constriction. Physical Review E, 100(5), 052408.
dc.identifier.doi10.1103/PhysRevE.100.052408
dc.identifier.essn2470-0053
dc.identifier.issn2470-0045
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevE.100.052408
dc.identifier.relatedurlhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052408
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104482
dc.issue.number5
dc.journal.titlePhysical review E (statistical, nonlinear, biological, and soft matter physics)
dc.language.isoeng
dc.page.final052408-16
dc.page.initial052408-1
dc.publisherAmerican Physical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/MECD//FPU2013%2F02826/ES/FPU2013%2F02826/
dc.relation.projectIDFIS201570339-C2-1-R
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FIS2015-67745-R/ES/MECANICA, ENERGETICA Y DINAMICA DE FLUCTUACIONES DE LA REPLICACION DEL ADN MITOCONDRIAL/
dc.relation.projectIDFIS201570339-C2-1-R
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FIS2015-67745-R/ES/MECANICA, ENERGETICA Y DINAMICA DE FLUCTUACIONES DE LA REPLICACION DEL ADN MITOCONDRIAL/
dc.relation.projectIDS2013/MIT-2807
dc.rights.accessRightsopen access
dc.subject.cdu576.32/.36
dc.subject.keywordCell division
dc.subject.keywordCell mechanics
dc.subject.ucmBiología celular (Biología)
dc.subject.ucmTermodinámica
dc.subject.unesco2406 Biofísica
dc.titleMechanical conditions for stable symmetric cell constriction
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number100
dspace.entity.typePublication
relation.isAuthorOfPublication6d423997-1ce4-455f-bc1f-bd777e4dd0fe
relation.isAuthorOfPublication48a00bc8-8d51-4040-b1c1-34507f6c489b
relation.isAuthorOfPublication.latestForDiscovery6d423997-1ce4-455f-bc1f-bd777e4dd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.100.052408.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format

Collections