Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Banach-Stone theorem for uniformly continuous functions

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T16:53:09Z
dc.date.available2023-06-20T16:53:09Z
dc.date.issued2000
dc.description.abstractIn this note we prove that the uniformity of a complete metric space X is characterized by the vector lattice structure of the set U(X) of all uniformly continuous real functions on X.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15531
dc.identifier.doi10.1007/s006050070008
dc.identifier.issn0026-9255
dc.identifier.officialurlhttp://www.springerlink.com/content/jgr5jgllju8btpe7/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57329
dc.issue.number3
dc.journal.titleMonatshefte für Mathematik
dc.language.isoeng
dc.page.final192
dc.page.initial189
dc.publisherSpringer-Verlag
dc.relation.projectIDPB96/1262
dc.relation.projectIDPB96/0607
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordUniformly continuous real functions
dc.subject.keywordlattice homomorphisms
dc.subject.keywordBanach-Stone theorems
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleA Banach-Stone theorem for uniformly continuous functions
dc.typejournal article
dc.volume.number131
dcterms.referencesAraujo J, Font JJ (2000) Linear isometries on subalgebras of uniformly continuous functions.Proc Edinburgh Math Soc 43: 139±147 Efremovich VA (1951) The geometry of proximity I. Math Sbor 31: 189±200 Engelking R (1977) General Topology. Warsaw: PWN-Polish Scienti®c Gillman L, Jerison M (1976) Rings of continuous functions. New York: Springer HernaÂndez S (1999) Uniformly continuous mappings de®ned by isometries of spaces of bounded uniformly continuous functions. Topology Atlas No 394 Hewitt E (1948) Rings of real-valued continuous functions I. Trans Amer Math Soc 64: 54±99 Isbell JR (1958) Algebras of uniformly continuous functions. Ann of Math 68: 96±125 Lacruz M, Llavona JG (1997) Composition operators between algebras of uniformly continuous functions. Arch Math 69: 52±56 Shirota T (1952) A generalization of a theorem of I. Kaplansky. Osaka Math J 4: 121±132
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
05.pdf
Size:
59.91 KB
Format:
Adobe Portable Document Format

Collections