A Banach-Stone theorem for uniformly continuous functions
dc.contributor.author | Garrido, M. Isabel | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T16:53:09Z | |
dc.date.available | 2023-06-20T16:53:09Z | |
dc.date.issued | 2000 | |
dc.description.abstract | In this note we prove that the uniformity of a complete metric space X is characterized by the vector lattice structure of the set U(X) of all uniformly continuous real functions on X. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15531 | |
dc.identifier.doi | 10.1007/s006050070008 | |
dc.identifier.issn | 0026-9255 | |
dc.identifier.officialurl | http://www.springerlink.com/content/jgr5jgllju8btpe7/fulltext.pdf | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57329 | |
dc.issue.number | 3 | |
dc.journal.title | Monatshefte für Mathematik | |
dc.language.iso | eng | |
dc.page.final | 192 | |
dc.page.initial | 189 | |
dc.publisher | Springer-Verlag | |
dc.relation.projectID | PB96/1262 | |
dc.relation.projectID | PB96/0607 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Uniformly continuous real functions | |
dc.subject.keyword | lattice homomorphisms | |
dc.subject.keyword | Banach-Stone theorems | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | A Banach-Stone theorem for uniformly continuous functions | |
dc.type | journal article | |
dc.volume.number | 131 | |
dcterms.references | Araujo J, Font JJ (2000) Linear isometries on subalgebras of uniformly continuous functions.Proc Edinburgh Math Soc 43: 139±147 Efremovich VA (1951) The geometry of proximity I. Math Sbor 31: 189±200 Engelking R (1977) General Topology. Warsaw: PWN-Polish Scienti®c Gillman L, Jerison M (1976) Rings of continuous functions. New York: Springer HernaÂndez S (1999) Uniformly continuous mappings de®ned by isometries of spaces of bounded uniformly continuous functions. Topology Atlas No 394 Hewitt E (1948) Rings of real-valued continuous functions I. Trans Amer Math Soc 64: 54±99 Isbell JR (1958) Algebras of uniformly continuous functions. Ann of Math 68: 96±125 Lacruz M, Llavona JG (1997) Composition operators between algebras of uniformly continuous functions. Arch Math 69: 52±56 Shirota T (1952) A generalization of a theorem of I. Kaplansky. Osaka Math J 4: 121±132 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1