Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Path independent demodulation method for single image interferograms with closed fringes within the function space C^2

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorEstrada, Julio César
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorMarroquín Zaleta, José Luis
dc.date.accessioned2023-06-20T10:37:07Z
dc.date.available2023-06-20T10:37:07Z
dc.date.issued2006-10-16
dc.description© 2006 Optical Society of America.
dc.description.abstractIn the last few years, works have been published about demodulating Single Fringe Pattern Images (SFPI) with closed fringes. The two best known methods are the regularized phase tracker (RPT), and the two-dimensional Hilbert Transform method (2D-HT). In both cases, the demodulation success depends strongly on the path followed to obtain the expected estimation. Therefore, both RPT and 2D-HT are path dependent methods. In this paper, we show a novel method to demodulate SFPI with closed fringes which follow arbitrary sequential paths. Through the work presented here, we introduce a new technique to demodulate SFPI with estimations within the function space C ; in other words, estimations where the phase curvature is continuous. The technique developed here, uses a frequency estimator which searches into a frequency discrete set. It uses a second order potential regularizer to force the demodulation system to look into the function space C^2. The obtained estimator is a fast demodulator system for normalized SFPI with closed fringes. Some tests to demodulate SFPI with closed fringes using this technique following arbitrary paths are presented. The results are compared to those from RPT technique. Finally, an experimental normalized interferogram is demodulated with the herein suggested technique.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22926
dc.identifier.doi10.1364/OE.14.009687
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.14.009687
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50789
dc.issue.number21
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final9698
dc.page.initial9687
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhase Quadrature Transform
dc.subject.keywordNatural Demodulation
dc.subject.keywordInterferometry
dc.subject.keywordPatterns
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePath independent demodulation method for single image interferograms with closed fringes within the function space C^2
dc.typejournal article
dc.volume.number14
dcterms.references1. A. Mujeeb, V. U. Nayar and V. R. Ravindran, “Electronic Speckle Pattern Interferometry techniques for nondestructive evaluation: a review”, INSIGHT 45 275–281 (2006). 2. J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry”, J. Phys. E: Sci. Instrum. 4 277–279 (1971). 3. J. A. Quiroga and M. Servín, “Isotropic n-dimensional fringe pattern normalization”, Opt Commun. 224 221–227 (2003). 4. J. A. Guerrero, J. L. Marroquín, and M. Rivera, “Adaptive monogenic filtering and normalization of ESPI fringe patterns”, Opt. Lett. 30 318–320 (2005). 5. M. Takeda, H. Ina, and S. Kobayashi, “Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry”, J. Opt. Soc. Am. 72 156–160 (1982). 6. K. A. Stetson andW. R. Brohinsky, “Fringe-shifting technique for numerical analysis of time-average holograms of vibrating objects”, J. Opt. Soc. Am. A 5 1472 (1988). 7. J. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfel, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surface and lenses”, Appl. Opt. 13 2693–2703 (1974). 8. M. Servín, J. L. Marroquín and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms”, J. Opt. Soc. Am. A 18 689–695 (2001). 9. K. G. Larkin, Donald J. Bone, and Michael A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. i. general background of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18 1862-1870 (2001). 10. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18 1871-1881 (2001). 11. K. Larkin, “Uniform estimation of orientation using local and nonlocal 2-D energy operators”, Opt. Express 13 8097-8121 (2005). 12. J. A. Quiroga, Manuel Servín and Francisco Cuevas, “Modulo 2 fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm”, J. Opt. Soc. Am. A 19 1524–1531 (2002). 13. J. Villa, I. De la Rosa and G. Miramontes, “Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator”, J. Opt. Soc. Am. A 22 2766–2773 (2005). 14. M. Servín and R. Rodríguez-Vera, “Two-dimensional phase locked loop demodulation of interferograms”, J. Mod. Opt. 40 2087–2094 (1993). 15. Munther A. Gdeisat, David R. Burton and Michael J. Lalor, “Real-Time Fringe Pattern Demodulation with a Second-Order Digital Phase-Locked Loop”, Appl. Opt. 39 5326–5336 (1993). 16. Jorge Nocedal and Stephen J. Wright, Numerical Optimization. Springer, 1999.
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA46.pdf
Size:
565.93 KB
Format:
Adobe Portable Document Format

Collections