On the product by generators of characteristically nilpotent Lie S-algebras
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T10:34:06Z | |
dc.date.available | 2023-06-20T10:34:06Z | |
dc.date.issued | 2003-11-01 | |
dc.description.abstract | We show that the product by generators preserves the characteristic nilpotence of Lie algebras, provided that the multiplied algebras belongs to the class of S-algebras. In particular, this shows the existence of nonsplit characteristically nilpotent Lie algebras h such that the quotient dim h−dim Z(h)=dim Z(h) is as small as wanted. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20741 | |
dc.identifier.doi | 10.1016/S0022-4049(03)00086-0 | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | https//doi.org/10.1016/S0022-4049(03)00086-0 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0022404903000860 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50566 | |
dc.issue.number | 2-3 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 164 | |
dc.page.initial | 155 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.554.3 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On the product by generators of characteristically nilpotent Lie S-algebras | en |
dc.type | journal article | |
dc.volume.number | 184 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1