Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging

dc.contributor.authorHidalgo Pérez, José Ignacio
dc.contributor.authorBotella Serrano, Marta
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorCervigón Ruckauer, Carlos
dc.contributor.authorMartínez, Remedios
dc.contributor.authorAramendi, Aranzazu
dc.contributor.authorMaqueda, Esther
dc.contributor.authorLanchares Dávila, Juan
dc.date.accessioned2025-01-30T17:41:41Z
dc.date.available2025-01-30T17:41:41Z
dc.date.issued2020-03
dc.description.abstractDiabetes Mellitus is a disease affecting more and more people every year. Depending on the kind of diabetes and sometimes on the stage of the illness, diabetic patients have to inject some amount of artificial insulin, namely bolus, before the meals, to make up the absence or malfunctioning of their natural insulin. This decision is a difficult task since they need to estimate the number of carbohydrates they are going to ingest, take into account the past and future circumstances, know the past values of glucose, evaluate if the effect of previously injected insulin has already finished and any other relevant information. In this paper, we present and compare a set of methodologies to automate the decision of the insulin bolus, which reduces the number of dangerous predictions. We combine two different data enrichment techniques based on Markov chains with grammatical evolution engines to generate models of blood glucose, and univariate marginal distribution algorithms and bagging techniques to select the set of models to assemble. In particular, we propose the Random-GE procedure, an adaptation of Random Forests to Grammatical Evolution, which leads to excellent prediction models, with a simple configuration and a reduced execution time. The ensemble gives the prediction of glucose for a duple of food and insulins, helping patients in the selection of the appropriate bolus to maintain healthy glucose levels after the meals. Experimental results show that our models get more accurate and robust predictions than previous approaches.eng
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipFundación Eugenio Rodríguez Pascual
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationJ. I. Hidalgo et al., «Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging», Applied Soft Computing, vol. 88, p. 105923, mar. 2020, doi: 10.1016/j.asoc.2019.105923.
dc.identifier.doi10.1016/j.asoc.2019.105923
dc.identifier.officialurlhttps://doi.org/10.1016/j.asoc.2019.105923
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/abs/pii/S1568494619307045?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117425
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/RTI2018-095180-B-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/Y2018/NMT-4668
dc.relation.projectIDinfo:eu-repo/grantAgreement/S2017/BMD-3773
dc.rights.accessRightsrestricted access
dc.subject.cdu004
dc.subject.keywordGrammatical evolution
dc.subject.keywordDiabetes management
dc.subject.keywordTime series forecasting
dc.subject.keywordData augmentation
dc.subject.keywordEnsemble models
dc.subject.keywordRandom-GE
dc.subject.keywordBagging
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleGlucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number88
dspace.entity.typePublication
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication60fd4aa8-7089-4e46-8f06-50bd1d9be903
relation.isAuthorOfPublication16573486-e80c-4ffd-903b-35cffc604780
relation.isAuthorOfPublication.latestForDiscovery981f825f-2880-449a-bcfc-686b866206d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format

Collections