Cathodoluminescence microscopy and spectroscopy of GaN epilayers microstructured using surface charge lithography
dc.contributor.author | Díaz-Guerra Viejo, Carlos | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.contributor.author | Volciuc, O. | |
dc.contributor.author | Popa, V. | |
dc.contributor.author | Tiginyanu, I. M. | |
dc.date.accessioned | 2023-06-20T10:44:10Z | |
dc.date.available | 2023-06-20T10:44:10Z | |
dc.date.issued | 2006-07-15 | |
dc.description | © 2006 American Institute of Physics. This work has been supported by MEC through Project No. MAT2003-00455, CAM through Project GR/MAT 630-04, U.S. Civilian Research and Development Foundation under Grant Nos. MR2-995 and MOR2-1033-CH-03, as well as by the Supreme Council for Research and Technological Development of Moldova. | |
dc.description.abstract | Cathodoluminescence (CL) microscopy and spectroscopy have been used to investigate the optical properties of GaN microstructures patterned by Ar+ ion irradiation and subsequent photoelectrochemical (PEC) etching. Monochromatic CL images and CL spectra reveal an enhancement of several defect-related emission bands in a 10 mu m wide area around each microstructure. In addition, columnar nanostructures and nanoetch pits were found in the PEC etched areas. CL emission of the nanocolumns is dominated by free electron to acceptor transitions, while excitonic luminescence prevails in the rest of the etched GaN layers. Investigation of the sidewalls of the microstructures reveals that a CL emission band centered at about 3.41 eV, attributed to excitons bound to structural defects, is effectively suppressed after PEC etching only in the observed nanocolumns. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.sponsorship | CAM | |
dc.description.sponsorship | U.S. Civilian Research and Development Foundation | |
dc.description.sponsorship | Supreme Council for Research and Technological Development of Moldova | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25989 | |
dc.identifier.doi | 10.1063/1.2214210 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.2214210 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51108 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Applied Physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | MAT2003-00455 | |
dc.relation.projectID | GR/MAT 630-04 | |
dc.relation.projectID | MR2-995 | |
dc.relation.projectID | MOR2-1033-CH-03 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Molecular-Beam Epitaxy | |
dc.subject.keyword | Damage-Induced Masking | |
dc.subject.keyword | Vapor-Phase-Epitaxy | |
dc.subject.keyword | Luminescence Properties | |
dc.subject.keyword | Freestanding Gan | |
dc.subject.keyword | Photoluminescence | |
dc.subject.keyword | Defects | |
dc.subject.keyword | Gallium | |
dc.subject.keyword | Illumination | |
dc.subject.keyword | Transitions | |
dc.subject.ucm | Física de materiales | |
dc.title | Cathodoluminescence microscopy and spectroscopy of GaN epilayers microstructured using surface charge lithography | |
dc.type | journal article | |
dc.volume.number | 100 | |
dcterms.references | 1. C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett. 71, 2151 (1997). 2. C. Youtsey, L. T. Romano, and I. Adesida, Appl. Phys. Lett. 73, 797 (1998). 3. A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, Appl. Phys. Lett. 77, 2610 (2000). 4. A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, Appl. Phys. Lett. 78, 1945 2001 . 5. C. Díaz-Guerra, J. Piqueras, V. Popa, A. Cojocaru, and I. M. Tiginyanu, Appl. Phys. Lett. 86, 223103 (2005). 6. A. Yamamoto and S. Yano, J. Electrochem. Soc. 122, 260 (1975). 7. A. Yamamoto, S. Thono, and C. Uemura, J. Electrochem. Soc. 128, 1095 (1981). 8. G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriot, J. Appl. Phys. 60, 4012 (1986). 9. K. D. Cummings, L. R. Harriot, G. C. Chi, and F. W. Ostermayer, Appl. Phys. Lett. 48, 659 (1986). 10. I. M. Tiginyanu, V. Popa, and O. Volciuc, Appl. Phys. Lett. 86, 174102 (2005). 11. M. A. Reshchikov, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 78, 2882 82001 9. 12. C. Díaz-Guerra, J. Piqueras, and A. Cavallini, Appl. Phys. Lett. 82, 2050 (2003). 13. M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005), and references therein. 14. M. Leroux, N. Greandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999). 15. M. A. Reshchikov, D. Huang, F. Yun, L. He, H. Morkoç, D. C. Reynolds, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 79, 3779 82001 9. 16 . F. Calle, F. J. Sánchez, J. M. G. Tijero, M. A. Sánchez-García, E. Calleja, and R. Beresford, Semicond. Sci. Technol. 12, 1396 81997 9. 17. G. Martínez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzman, J. Appl. Phys. 90, 5627 82001 9. 18. D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, and R. J. Molnar, J. Appl. Phys. 88, 1460 (2000). 19. C. Kisielowski et al., Phys. Rev. B 54, 17745 (1996). 20. K. S. A. Butcher, P. Afifuddin, T. L. Tansley, N. Brack, P. J. Pigram, H. Timmers, K. E. Princed, and R. G. Elliman, Appl. Surf. Sci. 230, 18 (2004). 21. J. Y. Chen, C. J. Pan, and G. C. Chi, Solid-State Electron. 43, 649 (1999). 22. R. Cheung, R. J. Reeves, S. A. Brown, E. van der Drift, and M. Kamp, J. Appl. Phys. 88, 7110 (2000). 23. J. F. Ziegler and J. P. Biersack, Stopping and Range of Ions into Matter (SRIM) software. http://www.srim.org/ 24. E. D. Haberer, C. H. Chen, A. Abare, M. Hansen, S. DenBaars, L. Coldren, U. Mishra, and E. L. Hu, Appl. Phys. Lett. 76, 3941 (2000). 25. E. D. Haberer, C. H. Chen, M. Hansen, S. Keller, S. DenBaars, L. Coldren, U. K. Mishra, and E. L. Hu, J. Vac. Sci. Technol. B 19, 603 (20019. 26. R. Khare and E. Hu, J. Appl. Phys. 72, 1543 (1992). 27. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000). 28. C. Trager-Cowan, S. McArthur, P. G. Middleton, K. P. O’Donnell, D. Zubia, and S. D. Hersee, MRS Internet J. Nitride Semicond. Res. 3, 36 (1998). 29. S. Fisher et al., J. Cryst. Growth 189–190, 556 (19989. 30. M. A. Reschikov, D. Huang, F. Yun, H. Morkoç, R. J. Molnar, and C. W. Litton, Mater. Res. Soc. Symp. Proc. 693, I6.28 (2002). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b1b44979-3a0d-45d7-aa26-a64b0dbfee18 | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | b1b44979-3a0d-45d7-aa26-a64b0dbfee18 |
Download
Original bundle
1 - 1 of 1