Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Structure and water attachment rates of ice in the atmosphere: role of nitrogen

dc.contributor.authorLlombart, Pablo
dc.contributor.authorBergua, Ramón M.
dc.contributor.authorNoya, Eva G.
dc.contributor.authorMacDowell, Luis G.
dc.date.accessioned2023-06-17T12:31:28Z
dc.date.available2023-06-17T12:31:28Z
dc.date.issued2019-08-21
dc.description.abstractIn this work we perform computer simulations of the ice surface in order to elucidate the role of nitrogen in the crystal growth rates and crystal habits of snow in the atmosphere. In pure water vapor at temperatures typical of ice crystal formation in cirrus clouds, we find that basal and primary prismatic facets exhibit a layer of premelted ice, with thickness in the subnanometer range. For partial pressures of 1 bar, well above the expected values in the troposphere, we find that only small amounts of nitrogen are adsorbed. The adsorption takes place onto the premelted surface, and hardly any nitrogen dissolves within the premelting film. The premelting film thickness does not change either. We quantify the resulting change of the ice/vapor surface tension to be in the hundredth of mN m−1 and find that the structure of the pristine ice surface is not changed in a significant manner. We perform a trajectory analysis of colliding water molecules, and find that the attachment rates from direct ballistic collision are very close to unity irrespective of the nitrogen pressure. Nitrogen is however at sufficient density to deflect a fraction of trajectories with smaller distance than the mean free path. Our results show explicitly that the reported differences in growth rates measured in pure water vapor and a controlled nitrogen atmosphere are not related to a significant disruption of the ice surface due to nitrogen adsorption. On the contrary, we show clearly from our trajectory analysis that nitrogen slows down the crystal growth rates due to collisions between water molecules with bulk nitrogen gas. This clarifies the long standing controversy of the role of inert gases on crystal growth rates and demonstrates their influence is solely related to the diffusion limited flow of water vapor across the gas phase.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62023
dc.identifier.doi10.1039/C9CP03728D
dc.identifier.issn1463-9076
dc.identifier.officialurlhttps://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03728d#!divAbstract
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12387
dc.issue.number35
dc.journal.titlePhysical Chemistry Chemical Physics
dc.language.isoeng
dc.page.final19611
dc.page.initial19594
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDFIS2017-89361-C3-2-P
dc.rights.accessRightsopen access
dc.subject.cdu544
dc.subject.keywordcrystal growth
dc.subject.keywordice
dc.subject.keywordsurfaces
dc.subject.keywordadsorption
dc.subject.keywordattachment coefficients
dc.subject.keywordsnow
dc.subject.ucmFísica atmosférica
dc.subject.ucmQuímica física (Física)
dc.subject.ucmSuperficies (Física)
dc.subject.ucmTermodinámica
dc.subject.ucmCristalografía (Geología)
dc.subject.ucmAgua
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.subject.unesco2210 Química Física
dc.subject.unesco2211.28 Superficies
dc.subject.unesco2213 Termodinámica
dc.subject.unesco2303.31 Química del Agua
dc.titleStructure and water attachment rates of ice in the atmosphere: role of nitrogen
dc.typejournal article
dc.volume.number21
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
full_record.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format

Collections