Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Jets of antimulticanonical bundles on del Pezzo surfaces of degree ≤2

dc.book.titleAlgebraic geometry : a volume in memory of Paolo Francia
dc.contributor.authorLanteri, Antonio
dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.editorBeltrametti, Mauro C.
dc.contributor.editorCatanese, Fabrizio
dc.contributor.editorCiliberto, Ciro
dc.contributor.editorLanteri, Antonio
dc.contributor.editorPedrini, Claudio
dc.date.accessioned2023-06-20T21:05:08Z
dc.date.available2023-06-20T21:05:08Z
dc.date.issued2002
dc.description.abstractIn the paper under review, the authors study the jets of antimulticanonical bundles on certain del Pezzo surfaces. The main idea is to investigate the stratification of the surfaces given by the rank of the evaluation map with values in the second jet bundles of these antimulticanonical bundles. The second dual variety of the associated polarized surface is also considered. After reviewing some preliminaries in Section 1, the authors look at a del Pezzo surface S with K2S=2 in Section 2. Let L=−2KX. The rank of the evaluation map j2,x:H0(S,L)→(J2L)x is determined for every point x∈S. It follows that L is 2-jet spanned exactly on S−R, where R is the ramification divisor of the double cover S→P2 induced by |−KS|. Moreover, (−tKS) is 2-jet spanned for all t≥3. Section 3 and Section 4 are devoted to a del Pezzo surface S with K2S=1. This time, let L=−3KX. Again, the rank of j2,x is determined for every point x∈S. Furthermore, (−4KS) is 2-jet spanned exactly on S−Δ, where Δ is the set of singular points of the singular elements in the pencil |−KS|, and (−tKS) is 2-jet spanned for all t≥5. In Section 5, the authors apply the previous results to study the dual varieties Sv of the earlier polarized surfaces (S,L). It is proved that when K2S=2, the dual variety Sv is birational to S. When K2S=1, the dual variety Sv is a smooth rational curve parametrizing the pencil |−KS|.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20540
dc.identifier.isbn3-11-017180-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60646
dc.page.final276
dc.page.initial257
dc.page.total355
dc.publication.placeBerlin
dc.publisherWalter de Gruyter
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordPezzo surfaces
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleJets of antimulticanonical bundles on del Pezzo surfaces of degree ≤2
dc.typebook part
dspace.entity.typePublication

Download