Modelization and numerical simulation of thermal ablation treatments in heart arrhythmias
dc.contributor.advisor | Herrero García, Miguel Ángel | |
dc.contributor.advisor | Parra Fabián, Ignacio | |
dc.contributor.advisor | Rubio Calzado, Gonzalo | |
dc.contributor.author | Amatriain Carballo, Aitor | |
dc.date.accessioned | 2023-06-17T14:25:17Z | |
dc.date.available | 2023-06-17T14:25:17Z | |
dc.date.defense | 2019-06-28 | |
dc.date.issued | 2019 | |
dc.description.abstract | La ablación con catéter es un procedimiento que se emplea para tratar enfermedades cardio-vasculares, especialmente arritmias. Un catéter se inserta a través de una vena, se sitúa en el área afectada del corazón y se aplica una descarga eléctrica con el objetivo de inutilizar el tejido anormal. Si la temperatura del tejido cardíaco supera un valor umbral se producen burbujas de vapor, y este fenómeno puede dar lugar a serias complicaciones. Por consiguiente, un aspecto de gran utilidad reside en la obtención de la distribución de temperatura en el tejido cardíaco. El número de trabajos centrados en la modelización matemática del problema es limitado, y los existentes carecen de apartados importantes como de validación de esquemas numéricos o de justificación de determinadas correlaciones. Es por ello por lo que es necesario ampliar los estudios previos, con el objetivo de obtener resultados lo más realistas posibles. Teniendo en cuenta las ideas anteriores, el propósito principal de este trabajo es el de dar un primer paso a la hora de analizar el problema, considerando un modelo tridimensional sencillo; en concreto, asumiendo simetría de revolución y aproximando la velocidad de la sangre por valores medios. Asimismo, realizando simplificaciones adicionales el problema puede reducirse a un sistema de dos ecuaciones parabólicas y dos ecuaciones elípticas, ambas sometidas a condiciones de compatibilidad. Dicho sistema se resuelve numéricamente por medio de un método espectral. En lo que respecta los resultados, los valores de temperatura que se obtienen en condiciones estándar son coherentes. Además, se realiza un estudio paramétrico del procedimiento, junto con una valoración de la importancia que poseen varias de las hipótesis realizadas en el modelo. El apartado de resultados concluye con un análisis sobre el control óptimo del sistema. | |
dc.description.abstract | L’ablation par cathéter est une procédure utilisée pour traiter des maladies cardiovasculaires, spécialement des arythmies. Un cathéter est introduit à travers d’une veine, il est placée dans la zone affectée et une décharge électrique est apliquée dans l’objectif d’inutiliser le tissu anormal. Si la température du tissu cardiaque dépasse une certaine valeur seuil des bulles de vapeur sont générées, et ce phénomène peut conduire à graves complications. Par conséquent, un aspect de grande utilité réside dans l’obtention de la distribution de température dans le tissu cardiaque. Le nombre de travaux axés sur la modélisation mathématique du problem es limité, et les existants manquent des sections importantes comme de validation des schémas numériques ou de justification de certaines corrélations. C’est pourquoi il est nécessaire d’élargir les études préliminaires, avec le principal but d’obtenir des résultats les plus réalistes possible. En tenant compte les idées ci-dessus, l’objectif principal de ce travail est de faire un primer pas pour l’analyse du problème, en considerant un modèle tridimensionnel simple; en particulier, en assumant symétrie rotationnelle et en rapprochant la vitesse du sang par valeurs mesurées. De plus, en effectuant des simplifications additionnels il est possible de réduire le problème a un système de deux équations paraboliques et deux elliptiques, les deux sujets à conditions de compatibilité. Ce système est résolu numériquement grâce à une méthode spectral. En ce qui concerne les resultats, les valeurs de température qui sont obtenues dans des conditions standard sont cohérentes. En outre, une étude paramétrique de la procédure est réalisée, avec une évaluation de l’importance qui possèdent plusieurs hypothèses effectuées dans le modèle. La section résultats conclut avec un analyse sur la commande optimale du système. | |
dc.description.abstract | Catheter ablation is a procedure that is used to treat cardiovascular diseases, specially arrhythmias. A catheter, that is inserted through a vein, is placed in the affected area of the heart, and an electric shock is applied in order to destroy the abnormal tissue. If the temperature of the cardiac tissue exceds a certain threshold stream pops occur, and this phenomenon can lead to serious complications. Therefore, a very helpful aspect consists of obtaining the temperature distribution in the cardiac tissue. The number of studies centered in the mathematical modelization of the problem is limited, and the existing ones lack important sections as numerical scheme validations or certain correlation justifications. This is the reason why it is necessary to extend the preceding studies, the objective being to obtain results as realistic as possible. Taking into account the previous remarks, the main goal of this work is to take a first step towards analising the problem, considering a simple three-dimensional model; in particular, assuming rotational symmetry and approximating blood velocity by mean values. Moreover, making additional simplifications the problem can be reduced to a system of two parabolic equations and two elliptic equations, both of them subjected to compatibility conditions. The system is solved numerically by means of a spectral method. With respect to the results, the temperature values that are obtained in standard conditions are coherent. Furthermore, a parametric study of the procedure is performed, together with an assessment of the importance of several assumptions made in the model. The results section concludes with an optimal control analysis of the system. | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/57134 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/14323 | |
dc.language.iso | spa | |
dc.master.title | Máster en Matemáticas Avanzadas | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.87:616.12-005 | |
dc.subject.cdu | 616.12-005:519.87 | |
dc.subject.keyword | Modelos matemáticos | |
dc.subject.keyword | Enfermedades cardiovasculares | |
dc.subject.keyword | Mathematical models | |
dc.subject.keyword | Cardiovascular system-Diseases | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Cardiología | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 3205.01 Cardiología | |
dc.title | Modelization and numerical simulation of thermal ablation treatments in heart arrhythmias | |
dc.title.alternative | Modelización y simulación numérica de tratamientos de ablación térmica en arritmias cardiacas | |
dc.title.alternative | Modélisation et simulation numérique des traitements d'ablation thermique dans les arythmies cardiaques | |
dc.type | master thesis | |
dcterms.references | [1] Almendral, J. and Barrio-López, M.T. (2015). «Pulmonary Vein Stenosis After Ablation: The Difference Between Clinical Symptoms and Imaging Findings, and the Importance of Definitions in This Context». Revista Española de Cardiología, Vol. 68, No. 12, pp. 1085-1091. [2] Anfuso, L., Corsi, M and Fasano, A. (2018). «Esophageal Thermal Probes: How Fast Should They Be?». Matthews Journal of Cardiology, Vol. 3, No. 1, pp. 1-5. [3] Antontsev, A.N. y Chipot, M. (1994). «The Thermistor Problem: Existence, Smoothness,Uniqueness, Blowup». SIAM Journal in Mathematical Analysis, Vol. 25, No. 4, pp. 1128-1156. [4] Avitall, B., Mughal, K., Hare, J., Helms, R. and Krum, D. (1997). «The Effects of Electrode Tissue Contact on Radiofrequency Lesion Generation». Pacing and Clinigal Electrophysiology, Vol. 20, No. 1, pp. 2899-2910. [5] Benchimol, A., Desser, K.B. and Gartlan, J.C. (1972). «Bidirectional Blood Flow Velocity in the Cardiac Chambers and Great Vessels Studied with the Doppler Ultrasonic Flowmeter». The American Journal of Medicine, Vol. 54, No. 4, pp. 467-473. [6] Benjamin, E.J. et al. (2019). «Heart Disease and Stroke Statistics - 2019 Update: A Report From the American Heart Association». AHA Journal of Circulation, Vol. 139, No. 10. [7] Berjano, E.J. et al. (2006). «Theoretical Modeling for Radiofrequency Ablation: State of the Art and Challenges for the Future». Biomedical Engineering Online, Vol. 5, No. 24. [8] Bodnár, T., Sequeira, A. and Prosi, M. (2011). «On the Shear-Thinning and Viscoelastic Effects of Blood Flow Under Various Flow Rates». Applied Mathematics and Computation Vol. 217, No. 11, pp. 5055–5067. [9] Boyd, J.P.N. (2000). «Chebyshev and Fourier Spectral Methods». Dover Publications. [10] Calkins et al. (1994). «Temperature Monitoring During Radiofrequency Catheter Ablation Procedures Using Closed Loop Control». AHA Journal of Circulation, Vol. 90, No. 3, pp. 1279-1286. [11] Calkins et al. (2012). «RS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation». Europace, Vol. 14, pp. 528-606. [12] Carlson, J, Johansson, R. and Olsson, S.B. (2001). «Classification of Electrocardiographic P-Wave Morphology». IEEE Transactions on Biomedical Engineering, Vol. 48, No. 4, pp. 401-405. [13] Cimatti, G. (2007). «Optimal Control for the Thermistor Problem with a Current Limiting Device». IMA Journal of Mathematical Control and Information, Vol. 24, pp. 339-345. [14] Dautray, R. and Lions, J.L. (2000). «Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5: Evolution Problems II». Springer. [15] Deneke, T. et al. (2011). «Utility of Esophageal Temperature Monitoring During Pulmonary Vein Isolation for Atrial Fibrillation Using Duty-Cycled Phased Radiofrequency Ablation.». Journal of Vascular Electrophysiology, Vol. 22, No. 3, pp. 255-261. [16] Draw it to Know it - Medical & Biological Sciences. «Why is the P wave smaller than the QRS complex?». https://www.drawittoknowit.com/pop-quizzes/physiology/ why-is-the-p-wave-smaller-than-the-qrs-complex. [17] Duck, F.A. (1990). «Physical Properties of Tissues. A Comprehensive Reference Book». Academic Press. [18] Durrer, D., Schoo, L., Schuilenburg, R.M. and Wellens, H.J.J. (1967). «The Role of Premature Beats in the Initiation and the Termination of Supraventricular Tachycardia in the Wolff-Parkinson-White Syndrome». AHA Journal of Circulation, Vol. 36, No. 5, pp. 644- 662. [19] Evans, L.C. (2010). «Partial Differential Equations». American Mathematical Society. [20] Fasano, A., Anfuso, L, Bozzi, S. and Pandozi, C. (2016). «Safety And Necessity Of Thermal Esophageal Probes During Radiofrequency Ablation For The Treatment Of Atrial Fibrillation ». Journal of Atrial Fibrillation, Vol. 9, No. 1, pp. 11-18. [21] Forster, K.R. and Schwan, H.P. (1989). «Dielectric Properties of Tissues and Biological Materials: A Critical Review.». Critical Reviews in Biomedical Engineering, Vol. 17, No. 1, pp. 25-104. [22] Ghia, K.K. et al. (2009). «A Nationwide Survey on the Prevalence of Atrioesophageal Fistula After Left Atrial Radiofrequency Catheter Ablation». Journal of nterventional Cardiac Electrophysiology, Vol. 24, pp. 33-36. [23] González-Suárez, A. and Berjano, E. (2016). Comparative Analysis of Different Methods of Modeling the Thermal Effect of Circulating Blood Flow During RF Cardiac Ablation». IEEE Transactions on Bio-Medical Engineering, Vol. 63, No. 2, pp. 250-259. [24] González-Suárez, A., Pérez, J.J. and Berjano, E. (2018). «Should Fluid Dynamics be Included in Computer Models of RF Cardiac Ablation by Irrigated-Tip Electrodes?». Biomedical Engineering Online, Vol. 17, No. 1. [25] Gilbarg, D. and Trudinger, N.S. (2000). «Elliptic Partial Differential Equations of Second Order». Springer. [26] Haemerich, D. and Webster, J.G. (2005). «Automatic Control of Finite Element Models for Temperature-Controlled Radiofrequency Ablation». Biomedical Engineering Online, Vol. 4, No. 42, pp. 1-8. [27] Haïssaguerre, M. et al. (1998). «Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins». The New England Journal of Medicine, Vol. 339, No. 10, pp. 659-666. [28] Halm, U. et al. (2010). «Thermal eEsophageal Lesions After Radiofrequency Catheter Ablation of Left Atrial Arrhythmias». American Journal of Gastroenterology, Vol. 105, No. 3, pp. 551-556. [29] Higuera, F.J., Liñán, A. and Rodríguez, M. (2005) «Mecánica de Fluidos - Lecciones 1 a 22». Sección de Publicaciones de la Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio. [30] Hrynkiv, V. (2009). «Optimal Boundary Control for a Time Dependent Thermistor Problem ». Electronic Journal of Differential Equations, Vol. 2009, No. 83, pp. 1-22. [31] Jackman, W.M. et al. (1991). «Catheter Ablation of Accesory Atrioventricular Pathways by Radiofrequency Current». The New England Journal of Medicine, Vol. 324, No. 23, pp. 1605-1611. [32] Joseph, J.P. and Rajappan, K. (2011). «Radiofrequency Ablation of Cardiac Arrhythmias: Past, Present and Future». QJUM: An International Journal of Medicine, Vol. 105, No. 4, pp. 303-314. [33] Kaouk, Z., Vahid Shahidi, A., Savard, P. and Molin, F. (1996). «Modelling of Myocardial Temperature Distribution During Radio-Frequency Ablation». Medical & Biological Engineering & Computing, Vol. 34, No. 2, pp. 165-170. [34] Knecht, S. et al. (2017). «Reliability of Luminal Oesophageal Temperature Monitoring During Radiofrequency ablation of atrial fibrillation: Insights from Probe Visualization and Oesophageal Reconstruction Using Magnetic Resonance Imaging». Europace, Vol. 19, No. 7, pp. 1123-1131. [35] Kopriva, D.A. (2009). «Implementing Spectral Methods for Partial Differential Equations». Springer. [36] Kuck, K-H. et al. (2012). «A Novel Radiofrequency Ablation Catheter Using Contact Force Sensing: Toccata Study». Heart Rythhm Journal, Vol. 9, No. 1, pp. 18-23. [37] Kumagai, K. et al. (2004). «Electrophysiologic Properties of Pulmonary Veins Assessed Using a Multielectrode Basket Catheter». Journal of the American College of Cardiology, Vol. 43, No. 12, pp. 2281-2289. [38] Landau, L.D. and Lifshitz, E.M. (1987). «Fluid Mechanics: Volume 6». Butterworth- Heineman. [39] Landau, L.D. and Lifshitz, E.M. (1980). «The Classical Theory of Fields: Volume 2».Butterworth-Heineman. [40] Langberg, J.J. et al. (1992). «Temperature Monitoring During Radiofrequency Catheter Ablation of Accessory Pathways». AHA Journal of Circulation, Vol. 86, No. 5, pp. 1469- 1474. [41] Martín-Garre, S., Pérez-Castellano, N., Quintanilla, J.G., Ferreiros, J. and Pérez-Villacastín, J. (2015). «Predictores de Pérdida Luminal de las Venas Pulmonares Tras Ablación por Radiofrecuencia». Revista Española de Cardiología, Vol. 68, No. 12, pp. 1085- 1091. [42] Morady, F. and Scheinman, M.M. (1984). «Transvenous Catheter Ablation of a Posteroseptal Accessory Pathway in a Patient with the Wolff–Parkinson–White Syndrome». The New England Journal of Medicine, Vol. 310, No. 11, pp. 310-311. [43] The Netlib. «LAPACK Documentation». http://www.netlib.org/lapack/ explore-html/. [44] Ouyang, F. et al. (2004). «Complete Isolation of Left Atrium Surrounding the Pulmonary Veins: New Insights From the Double-Lasso Technique in Paroxysmal Atrial Fibrillation». AHA Journal of Circulation, Vol. 110, No. 15, pp. 2090-2096. [45] Packer, D.L. et al. (2005). «Clinical Presentation, Investigation and Management of Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation». AHA Journal of Circulation, Vol. 111, No. 5, pp. 546-554. [46] Pennes, H.H. (1948). «Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm». Journal of Applied Physiology, Vol. 1, No. 2, pp. 93-122. [47] Qi, Z. et al. (2016). «Contact Force-Guided Catheter Ablation for the Trreatment of Atrial Fibrillation. a Meta Analysis of Randomized, Controlled Trials». Brazilian Journal of Medical and Biological Research, Vol. 49, No. 3. [48] Rillig, A. et al. (2015). «Modified Energy Settings are Mandatory to Minimize Oesophageal Injury Using the Novel Multipolar Irigated Radiofrequency Ablation Catheter for Pulmonary Vein Isolation». Europace, Vol. 17, No. 3, pp. 396-402. [49] Sánchez-Quintana, D. et al. (2005). «Anatomic Relations Between the Esophagus and Left Atrium and Relevance for Ablation of Atrial Fibrillation». AHA Journal of Circulation, Vol. 112, No. 10, pp. 1400-1405. [50] Schutt, D., Berjano, E. and Haemmerich, D. (2009). «Effect of Electrode Thermal Conductivity in Cardiac Radiofrequency Catheter Ablation: A Computational Modeling Study». International Journal of Hyperthermia Vol. 25, No. 2, pp. 99-107. [51] Shi, P. and Shillor, M. (1993). «Exisrence of a Solution to the Stefan Problem with Joule’s Heating». Journal of Differential Equations, Vol. 105, No. 2, pp. 239-263. [52] Temam, R. (1976). «Navier-Stokes Equations. Theory and Numerical Analysis». North-Holland. [53] Tungjitkusolmun, S., Woo, E.J., Cao, H., Tsai, J.Z., Vorperian, V.R. and Webster, J.G. (2002). «Thermal—Electrical Finite Element Modelling for Radio Frequency Cardiac Ablation: Effects of Changes in Myocardial Properties». Medical & Biological Engineering & Computing Vol. 38, No. 5, pp. 562-568. [54] University of Chicago Medical Center . «Arrhythmia Ablation Therapy». https://www.uchicagomedicine.org/conditions-services/heart-vascular/arrhythmias/treatments/ablation-therapy. [55] Valvano, J.W. and Bhabaraju, J.C. (1999). «Thermophysical Properties of Swine Myocardium ». International Journal of Thermophysics, Vol. 20, No. 2, pp. 665-676. [56] Yokoyama, S. et al. (2008). «Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Stream Pop and Thrombus». Circulation, Arrhythmmia and Electrophysiology, Vol. 1, No. 5, pp. 155-159. [57] Zellerhoff, S. et al. (2010). «Damage to the Esophagus After Atrial Fibrillation Ablation Just the Tip of the Iceberg? High Prevalence of Mediastinal Changes Diagnosed by Endosonography ». Circulation, Arrhythmmia and Electrophysiology, Vol. 3, No. 2, pp. 155-159. | |
dspace.entity.type | Publication | |
relation.isAdvisorOfPublication | ba1405fa-f03c-43c4-93f0-1bf3c1f6e836 | |
relation.isAdvisorOfPublication.latestForDiscovery | ba1405fa-f03c-43c4-93f0-1bf3c1f6e836 |
Download
Original bundle
1 - 1 of 1