Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Correlation structure of the δ_(n) statistic for chaotic quantum systems

dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorRetamosa Granado, Joaquín
dc.contributor.authorFaleiro, E.
dc.contributor.authorGómez Gómez, José María
dc.date.accessioned2023-06-20T10:49:12Z
dc.date.available2023-06-20T10:49:12Z
dc.date.issued2005-12
dc.description©2005 The American Physical Society. This work is supported in part by Spanish Government Grant Nos. BFM2003-04147-C02 and FTN2003-08337-C04-04.
dc.description.abstractThe existence of a formal analogy between quantum energy spectra and discrete time series has been recently pointed out. When the energy level fluctuations are described by means of the δ_(n) statistic, it is found that chaotic quantum systems are characterized by 1/f noise, while regular systems are characterized by 1/f(2). In order to investigate the correlation structure of the δ_(n) statistic, we study the qth-order height-height correlation function C-q(tau), which measures the momentum of order q, i.e., the average qth power of the signal change after a time delay tau. It is shown that this function has a logarithmic behavior for the spectra of chaotic quantum systems, modeled by means of random matrix theory. On the other hand, since the power spectrum of chaotic energy spectra considered as time series exhibit 1/f noise, we investigate whether the qth-order height-height correlation function of other time series with 1/f noise exhibits the same properties. A time series of this kind can be generated as a linear combination of cosine functions with arbitrary phases. We find that the logarithmic behavior arises with great accuracy for time series generated with random phases.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Government
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27764
dc.identifier.doi10.1103/PhysRevE.72.066219
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.72.066219
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51282
dc.issue.number6
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDBFM2003-04147-C02
dc.relation.projectIDFTN2003-08337-C04-04
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordSelf-Affine Fractals
dc.subject.keyword1/ƒ Noise
dc.subject.keywordSpectrum
dc.subject.keywordStates
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleCorrelation structure of the δ_(n) statistic for chaotic quantum systems
dc.typejournal article
dc.volume.number72
dcterms.references[1] M. V. Berry and M. Tabor, Proc. R. Soc. London 356, 375 (1977). [2] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [4] H. J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge, England, 1999). [5] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1988). [6] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [8] Jens Feder, Fractals (Plenum, New York, 1998). [9] G. Rangarajan and M. Ding, Phys. Rev. E 61, 4991 (2000). [10] N. P. Greis and H. S. Greenside, Phys. Rev. A 44, 2324 (1991). [11] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [12] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005). [13] M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005). [14] B. B. Mandelbrot, Multifractals and 1/f Noise (Springer, New York, 1999). [15] R. Badii and A. Politi, Complexity Hierarchical Structure and Scaling in Physics (Cambridge University Press, Cambridge, 1997). [16] A. L. Barabási and Thomas Vicsek, Phys. Rev. A 44, 2730 (1991). [17] B. B. Mandelbrot, Phys. Scr. 32, 257 (1985). [18] W. Feller, An Introduction to Probablity Theory and its Applications Vol. 2 (John Wiley & Sons, 1971). [19] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (John Wiley & Sons, 1990). [20] T. G. M. Kleinpenning and A. H. de Kuijper, J. Appl. Phys. 63, 43 (1988). [22] Handbook of Mathematical Functions, edited by M. Abramovitz and I. A. Stegun (Dover Publiations, Inc., New York, 1972). [23] F. N. Hooge and P. A. Bobbert, Physica B 239, 223 (1997). [24] M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967). [25] J. H. Hannay and A. M. Ozorio de Almeida, J. Phys. A 17, 3429 (1984). [26] O. Bohigas, P. Leboeuf, and M. J. Sánchez, Physica D 131, 186 (1999). [27] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys. Rev. Lett. 93, 014103 (2004);S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, cond-mat/0503052 (unpublished). [29] Oriol Bohigas, Rizwan U. Haq, and Akhilesh Pandey, Phys. Rev. Lett. 54, 1645 (1985). [30] P. Embrechts and M. Makoto, Self-Similar Processes (Princeton University Press, Princeton, NS, 2002). [31] D. Schertzer, S. Lovejoy, and P. Hubert, An Introduction to Stochastic Multifractal Fields, edited by A. Ern and L. Weiping, Series in Contemporary Applied Mathematics (H. E. P., Beijing, 2002) pp. 106–179.
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication41cdbde8-9afc-4edf-aa3c-1430d8ad268e
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano41libre.pdf
Size:
130.33 KB
Format:
Adobe Portable Document Format

Collections