Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Information criteria for Fay–Herriot model selection

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

The selection of an appropriate model is a fundamental step of the data analysis in small area estimation. Bias corrections to the Akaike information criterion, AIC, and to the Kullback symmetric divergence criterion, KIC, are derived for the Fay–Herriot model. Furthermore, three bootstrap-corrected variants of AIC and of KIC are proposed. The performance of the eight considered criteria is investigated with a simulation study and an application to real data. The obtained results suggest that there are better alternatives than the classical AIC.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections