Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fractionalization of the linear cyclic transforms

dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.contributor.authorCalvo Padilla, María Luisa
dc.date.accessioned2023-06-20T18:59:36Z
dc.date.available2023-06-20T18:59:36Z
dc.date.issued2000-12
dc.description© 2000 Optical Society of America. International Conference on Optical Science and Applications for Sustainable Development (2000. Dakar, Senegal). This research was financially supported by the Rectorate of the Complutense University of Madrid (UCM), under Multidisciplinary Project PR486/97-7477/97. T. Alieva is grateful for a grant from UCM. Partial results of this study were presented at the International Conference on Optical Science and Applications for Sustainable Development, Dakar (Senegal), April 10–14, 2000.
dc.description.abstractIn this study the general algorithm for the fractionalization of the linear cyclic integral transforms is established. It is shown that there are an infinite number of continuous fractional transforms related to a given cyclic integral transform. The main properties of the fractional transforms used in optics are considered. As an example, two different types of fractional Hartley transform are introduced, and the experimental setups for their optical implementation are proposed.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25632
dc.identifier.doi10.1364/JOSAA.17.002330
dc.identifier.issn0740-3232
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.17.002330
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59065
dc.issue.number12
dc.journal.titleJournal of the Optical Society of America A-Optics Image Science And Vision
dc.language.isoeng
dc.page.final2338
dc.page.initial2330
dc.publisherOptical Society of America
dc.relation.projectIDPR486/97-7477/97
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptical Implementation
dc.subject.keywordFourier-Transforms
dc.subject.keywordHilbert Transform
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleFractionalization of the linear cyclic transforms
dc.typejournal article
dc.volume.number17
dcterms.references1. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation”, J. Opt. Soc. Am. A 10, 1875–1881 (1993). 2. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional transformation in optics”, in Progress in Optics, XXXVIII, E. Wolf, ed. (Elsevier, Amsterdam, 1998), pp. 263–342. 3. H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, “Introduction to the fractional Fourier transform and its applications”, Adv. Imaging Electron Phys. 106, 239–291 (1999). 4. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform”, Opt. Lett. 21, 281–283 (1996). 5. A. W. Lohmann, E. Tepichin, and J. G. Ramirez, “Optical implementation of the fractional Hilbert transform for two-dimensional objects”, Appl. Opt. 36, 6620–6626 (1997). 6. L. Yu, Y. Lu, X. Zeng, M. Huang, M. Chen, W. Huang, and Z. Zhu, “Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform”, Opt. Lett. 23, 1158–1160 (1998). 7. B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform”, IEEE Trans. Acoust. Speech Signal Process. 30, 25–31 (1982). 8. C. C. Shih, “Fractionalization of Fourier transform”, Opt. Commun. 118, 495–498 (1995). 9. S. Liu, J. Jiang, Y. Zhang, and J. Zhang, “Generalized fractional Fourier transforms”, J. Phys. A 30, 973–981 (1997). 10. T. Alieva and M. J. Bastiaans, “Powers of transfer matrices determined by means of eigenfunctions”, J. Opt. Soc. Am. A 16, 2413–2418 (1999). 11. D. A. Linden, “A discussion of sampling theorems”, Proc. IRE 47, 1219–1226 (1959). 12. R. P. Kanwal, Linear Integral Equations: Theory and Techniques (Academic, New York, 1971), Chaps. 8 and 9. 13. T. Alieva and A. Barbe, “Self-fractional Fourier functions and selection of modes”, J. Phys. A 30, L211–L215 (1997). 14. R. N. Bracewell, H. Bartelt, A. W. Lohmann, and N. Streibl, “Optical synthesis of the Hartley transform”, Appl. Opt. 24, 1401–1402 (1985).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoverye2846481-608d-43dd-a835-d70f73a4dd48

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CalvoML68.pdf
Size:
184.81 KB
Format:
Adobe Portable Document Format

Collections