Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

This work studies a parabolic-parabolic chemotactic PDE's system which describes the evolution of a biological population “U” and a chemical substance “V”, using a Generalized Finite Difference Method, in a two dimensional bounded domain with regular boundary. In a previous paper [12], the authors asserted global classical solvability and periodic asymptotic behavior for the continuous system in 2D. In this continuous work, a rigorous proof of the global classical solvability to the discretization of the model proposed in [12] is presented in two dimensional space. Numerical experiments concerning the convergence in space and in time, and long-time simulations are presented in order to illustrate the accuracy, efficiency and robustness of the developed numerical algorithms.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections