Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Video Transcoding

dc.conference.dateMarch, 25-29
dc.conference.placeFlorence, Italy
dc.conference.title2019 Design, Automation & Test in Europe Conference & Exhibition (DATE)
dc.contributor.authorCostero Valero, Luis María
dc.contributor.authorIranfar, Arman
dc.contributor.authorZapater Sancho, Marina
dc.contributor.authorIgual Peña, Francisco Daniel
dc.contributor.authorOlcoz Herrero, Katzalin
dc.contributor.authorAtienza Alonso, David
dc.date.accessioned2024-01-30T12:32:43Z
dc.date.available2024-01-30T12:32:43Z
dc.date.issued2019
dc.description.abstractReal-time video transcoding has recently raised as a valid alternative to address the ever-increasing demand for video contents in servers’ infrastructures in current multi-user environments. High Efficiency Video Coding (HEVC) makes efficient online transcoding feasible as it enhances user experience by providing the adequate video configuration, reduces pressure on the network, and minimizes inefficient and costly video storage. However, the computational complexity of HEVC, together with its myriad of configuration parameters, raises challenges for power management, throughput control, and Quality of Service (QoS) satisfaction. This is particularly challenging in multi-user environments where multiple users with different resolution demands and bandwidth constraints need to be served simultaneously. In this work, we present MAMUT, a multiagent machine learning approach to tackle these challenges. Our proposal breaks the design space composed of run-time adaptation of the transcoder and system parameters into smaller sub-spaces that can be explored in a reasonable time by individual agents. While working cooperatively, each agent is in charge of learning and applying the optimal values for internal HEVC and system-wide parameters. In particular, MAMUT dynamically tunes Quantization Parameter, selects number of threads per video, and sets the operating frequency with throughput and video quality objectives under compression and power consumption constraints. We implement MAMUT on an enterprise multicore server and compare equivalent scenarios to state-ofthe-art alternative approaches. The obtained results reveal that MAMUT consistently attains up to 8x improvement in terms of FPS violations (and thus Quality of Service), 24% power reduction, as well as faster and more accurate adaptation both to the video contents and available resources.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.23919/DATE.2019.8715256
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96486
dc.language.isoeng
dc.page.final563
dc.page.initial558
dc.rightsAttribution-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleMAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Video Transcoding
dc.typeconference paper
dspace.entity.typePublication
relation.isAuthorOfPublicationb2616c88-d3da-43df-86cb-3ced1084f460
relation.isAuthorOfPublicatione1ed9960-37d5-4817-8e5c-4e0e392b4d66
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublicationcbef6c8a-04b5-428f-b092-c8399eb856a4
relation.isAuthorOfPublication.latestForDiscoveryb2616c88-d3da-43df-86cb-3ced1084f460

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mamut.pdf
Size:
344.21 KB
Format:
Adobe Portable Document Format

Collections