Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Family Of Estimators For The Loglinear Model Of Quasi-Independence Based On Power-Divergence Measures

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Citations
Google Scholar

Citation

Abstract

We study the minimum power-divergence estimator, introduced and studied by N. Cressie and T. R. C. Read [Multinomial goodness-of-fit tests. J. R. Stat. Soc., Ser. B 46, 440–464 (1984), in the loglinear model of quasi-independence. A simulation study illustrates that minimum chi-squared estimator and Cressie-Read estimator are good alternatives to the classical maximum-likelihood estimator for this problem. The estimator obtained for = 2 is the most robust and efficient estimator among the family of the minimum power estimators.

Research Projects

Organizational Units

Journal Issue

Description

loglinear model, quasi-independence, maximum likelihood, minimum powerdivergence estimator

Keywords

Collections