PROTOTWIN-PET: A deep learning and GPU-based workflow for dose verification in proton therapy with PET
| dc.contributor.author | Cabrales, Pablo | |
| dc.contributor.author | Onecha, Víctor V. | |
| dc.contributor.author | Izquierdo-García, David | |
| dc.contributor.author | Fraile Prieto, Luis Mario | |
| dc.contributor.author | Udías Moinelo, José Manuel | |
| dc.contributor.author | López Herraiz, Joaquín | |
| dc.date.accessioned | 2025-07-11T11:09:59Z | |
| dc.date.available | 2025-07-11T11:09:59Z | |
| dc.date.issued | 2025-01-20 | |
| dc.description.abstract | In proton therapy (PT), accurate dose delivery verification is critical for detecting treatment plan deviations. This can be achieved by imaging activated positron emitters with a positron emission tomography (PET) acquisition and converting the data into a delivered dose image. This work presents PROTOTWIN-PET (PROTOn therapy digital TWIN models for dose verification with PET), a patient-specific, deep learning (DL) and GPU-based workflow for 3-D dose verification. The proposed workflow generates a dataset of simulated, realistic 3-D PET and dose pairs that reflect possible clinical deviations in patient positioning and physical parameters. Using this dataset, a DL model is trained to estimate the delivered dose from the PET image, incorporating a deviation-predicting branch (DPB) to estimate patient positioning deviations. PROTOTWIN-PET is demonstrated on a two-field oropharyngeal cancer treatment plan, estimating the delivered dose in milliseconds with an average mean relative error of 0.6% and near-perfect gamma passing rates (3 mm, 3%). Positioning deviations are estimated on average within a tenth of a millimeter and degree. PROTOTWIN-PET can be implemented within the one-day interval between the plan CT acquisition and the first treatment session, potentially enabling timely treatment plan adjustments and maximizing the precision of PT. PROTOTWIN-PET is available at github.com/pcabrales/prototwin-pet.git. | |
| dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
| dc.description.sponsorship | European Commission | |
| dc.description.sponsorship | Comunidad de Madrid | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.sponsorship | Banco de Santander | |
| dc.description.status | pub | |
| dc.identifier.citation | P. Cabrales, V. V. Onecha, D. Izquierdo-García, L. M. Fraile, J. M. Udías, y J. L. Herraiz, «PROTOTWIN-PET: A Deep Learning and GPU-Based Workflow for Dose Verification in Proton Therapy With PET», IEEE Trans. Radiat. Plasma Med. Sci., vol. 9, n.o 6, pp. 821-831, jul. 2025, doi: 10.1109/TRPMS.2025.3531536. | |
| dc.identifier.doi | 10.1109/TRPMS.2025.3531536 | |
| dc.identifier.essn | 2469-7303 | |
| dc.identifier.officialurl | https://www.doi.org/10.1109/TRPMS.2025.3531536 | |
| dc.identifier.relatedurl | https://ieeexplore.ieee.org/document/10847605 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/122436 | |
| dc.issue.number | 6 | |
| dc.journal.title | IEEE Transactions on Radiation and Plasma Medical Sciences | |
| dc.language.iso | eng | |
| dc.page.final | 831 | |
| dc.page.initial | 821 | |
| dc.publisher | IEEE | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/ Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130592B-I00/PLATAFORMA DE GEMELO DIGITAL BASADO EN INTELIGENCIA ARTIFICIAL PARA PROTONTERAPIA/ | |
| dc.relation.projectID | PID2021-126998OB-I00 | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133057-I00/ES/SOFTWARE PARA EL USO DE COINCIDENCIAS TRIPLES EN TOMOGRAFIA POR EMISION DE POSITRONES/ | |
| dc.relation.projectID | S2022/BMD-7434/ASAP | |
| dc.relation.projectID | 910059 | |
| dc.relation.projectID | CT15-23 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 539.1 | |
| dc.subject.cdu | 615.849.6 | |
| dc.subject.keyword | Deep learning (DL) | |
| dc.subject.keyword | Digital twins | |
| dc.subject.keyword | Dose verification | |
| dc.subject.keyword | GPU | |
| dc.subject.keyword | Positron emission tomography (PET) | |
| dc.subject.keyword | Proton therapy (PT) | |
| dc.subject.ucm | Física nuclear | |
| dc.subject.ucm | Diagnóstico por imagen y medicina nuclear | |
| dc.subject.unesco | 2207 Física Atómica y Nuclear | |
| dc.subject.unesco | 3201.12 Radioterapia | |
| dc.title | PROTOTWIN-PET: A deep learning and GPU-based workflow for dose verification in proton therapy with PET | |
| dc.type | journal article | |
| dc.volume.number | 9 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ec83106c-33f4-426c-afd6-68c5d859f9d4 | |
| relation.isAuthorOfPublication | 3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f | |
| relation.isAuthorOfPublication | ff1ea731-78c3-4e37-a602-13cc8037ae8e | |
| relation.isAuthorOfPublication.latestForDiscovery | 3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f |
Download
Original bundle
1 - 1 of 1


