PROTOTWIN-PET: A deep learning and GPU-based workflow for dose verification in proton therapy with PET

dc.contributor.authorCabrales, Pablo
dc.contributor.authorOnecha, Víctor V.
dc.contributor.authorIzquierdo-García, David
dc.contributor.authorFraile Prieto, Luis Mario
dc.contributor.authorUdías Moinelo, José Manuel
dc.contributor.authorLópez Herraiz, Joaquín
dc.date.accessioned2025-07-11T11:09:59Z
dc.date.available2025-07-11T11:09:59Z
dc.date.issued2025-01-20
dc.description.abstractIn proton therapy (PT), accurate dose delivery verification is critical for detecting treatment plan deviations. This can be achieved by imaging activated positron emitters with a positron emission tomography (PET) acquisition and converting the data into a delivered dose image. This work presents PROTOTWIN-PET (PROTOn therapy digital TWIN models for dose verification with PET), a patient-specific, deep learning (DL) and GPU-based workflow for 3-D dose verification. The proposed workflow generates a dataset of simulated, realistic 3-D PET and dose pairs that reflect possible clinical deviations in patient positioning and physical parameters. Using this dataset, a DL model is trained to estimate the delivered dose from the PET image, incorporating a deviation-predicting branch (DPB) to estimate patient positioning deviations. PROTOTWIN-PET is demonstrated on a two-field oropharyngeal cancer treatment plan, estimating the delivered dose in milliseconds with an average mean relative error of 0.6% and near-perfect gamma passing rates (3 mm, 3%). Positioning deviations are estimated on average within a tenth of a millimeter and degree. PROTOTWIN-PET can be implemented within the one-day interval between the plan CT acquisition and the first treatment session, potentially enabling timely treatment plan adjustments and maximizing the precision of PT. PROTOTWIN-PET is available at github.com/pcabrales/prototwin-pet.git.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipBanco de Santander
dc.description.statuspub
dc.identifier.citationP. Cabrales, V. V. Onecha, D. Izquierdo-García, L. M. Fraile, J. M. Udías, y J. L. Herraiz, «PROTOTWIN-PET: A Deep Learning and GPU-Based Workflow for Dose Verification in Proton Therapy With PET», IEEE Trans. Radiat. Plasma Med. Sci., vol. 9, n.o 6, pp. 821-831, jul. 2025, doi: 10.1109/TRPMS.2025.3531536.
dc.identifier.doi10.1109/TRPMS.2025.3531536
dc.identifier.essn2469-7303
dc.identifier.officialurlhttps://www.doi.org/10.1109/TRPMS.2025.3531536
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/10847605
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122436
dc.issue.number6
dc.journal.titleIEEE Transactions on Radiation and Plasma Medical Sciences
dc.language.isoeng
dc.page.final831
dc.page.initial821
dc.publisherIEEE
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/ Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130592B-I00/PLATAFORMA DE GEMELO DIGITAL BASADO EN INTELIGENCIA ARTIFICIAL PARA PROTONTERAPIA/
dc.relation.projectIDPID2021-126998OB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133057-I00/ES/SOFTWARE PARA EL USO DE COINCIDENCIAS TRIPLES EN TOMOGRAFIA POR EMISION DE POSITRONES/
dc.relation.projectIDS2022/BMD-7434/ASAP
dc.relation.projectID910059
dc.relation.projectIDCT15-23
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.cdu615.849.6
dc.subject.keywordDeep learning (DL)
dc.subject.keywordDigital twins
dc.subject.keywordDose verification
dc.subject.keywordGPU
dc.subject.keywordPositron emission tomography (PET)
dc.subject.keywordProton therapy (PT)
dc.subject.ucmFísica nuclear
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.subject.unesco3201.12 Radioterapia
dc.titlePROTOTWIN-PET: A deep learning and GPU-based workflow for dose verification in proton therapy with PET
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublicationec83106c-33f4-426c-afd6-68c5d859f9d4
relation.isAuthorOfPublication3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f
relation.isAuthorOfPublicationff1ea731-78c3-4e37-a602-13cc8037ae8e
relation.isAuthorOfPublication.latestForDiscovery3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PROTOTWIN-PET.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format

Collections