Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Exact Filling of Figures with the Derivatives of Smooth Mappings Between Banach Spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

University of Toronto Press
Citations
Google Scholar

Citation

Abstract

We establish sufficient conditions on the shape of a set A included in the space Ln s (X; Y ) of the n-linear symmetric mappings between Banach spaces X and Y , to ensure the existence of a Cn-smooth mapping f : X ¡! Y , with bounded support, and such that f(n)(X) = A, provided that X admits a Cn- smooth bump with bounded n-th derivative and densX = densLn(X; Y ). For instance, when X is infinite-dimensional, every bounded connected and open set U containing the origin is the range of the n-th derivative of such a mapping. The same holds true for the closure of U, provided that every point in the boundary of U is the end point of a path within U. In the finite-dimensional case, more restrictive conditions are required. We also study the Fr´echet smooth case for mappings from Rn to a separable infinite-dimensional Banach space and the Gˆateaux smooth case for mappings defined on a separable infinite-dimensional Banach space and with values in a separable Banach space.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections