Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Studies on pervaporation separation of acetone, acetonitrile and ethanol from aqueous solutions

dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorCojocaru, C.
dc.contributor.authorZakrzewska-Tunadel, G.
dc.date.accessioned2023-06-20T10:45:36Z
dc.date.available2023-06-20T10:45:36Z
dc.date.issued2008-10-22
dc.description© 2008 Elsevier B.V. This work was financially supported by FP6 European Funds under Marie Curie project: AMERAC no. MTKD-CT-2004-509226. The authors gratefully acknowledge this financial support.
dc.description.abstractPervaporation is applied for acetone, acetonitrile and ethanol removal from water solutions. The separation of binary acetone-water, acetonitrile-water and ethanol-water mixtures was initially carried out. The effects of feed concentration and feed temperature on the pervaporation performance, total and partial permeate fluxes as well as organic selectivity, have been investigated. The overall mass transfer coefficients have been determined and discussed for each organic-water mixture at different conditions of feed temperature and initial organic feed concentrations. The overall and individual activation energies of water and each organic compound associated to the permeation process have been calculated. Finally, pervaporation was applied to wastewater solutions containing acetone, acetonitrile and ethanol at a temperature of 40 degrees C. The organic selectivity was found to be in the order of acetone > acetonitrile > ethanol.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP6
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26446
dc.identifier.doi10.1016/j.seppur.2008.05.016
dc.identifier.issn1383-5866
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.seppur.2008.05.016
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51165
dc.issue.number2
dc.journal.titleSeparation and purification technology
dc.language.isoeng
dc.page.final310
dc.page.initial303
dc.publisherElsevier Science BV
dc.relation.projectIDMTKD-CT-2004-509226
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordSurface Modification
dc.subject.keywordWater Mixtures
dc.subject.keywordMass-Transfer
dc.subject.keywordMembranes
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleStudies on pervaporation separation of acetone, acetonitrile and ethanol from aqueous solutions
dc.typejournal article
dc.volume.number63
dcterms.references[1] P.A. Kober, Pervaporation, perstillation and percrystallization, J. Am. Chem. Soc. 39 (1917) 944–948. [2] R.C. Binning, R.J. Lee, Separation of azeotropic mixtures, U.S. Patent 2,953,502 (September 20, 1960). [3] R.Y.M. Huang, Pervaporation Membrane Separation Processes, Membrane Science and Technology Series 1, Elsevier, New York, 1991. [4] T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press, Boca Raton, FL, 1993. [5] M. Khayet, J.P.G. Villaluenga, M.P. Godino, J.I. Mengual, B. Seoane, K.C. Khulbe, T. Matsuura, Preparation and application of dense poly(phenylene oxide) membranes in pervaporation, J. Colloid Interface Sci. 278 (2004) 410–422. [6] S.K. Ray, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Development of new synthetic membranes for separation of benzene–cyclohexane mixtures by pervaporation: a solubility parameter approach, Ind. Eng. Chem. Res. 36 (12) (1997) 5265–5276. [7] F. Liu, L. Liu, X. Feng, Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation, Sep. Purif. Technol. 42 (2005) 273–282. [8] M. Khayet, T. Matsuura, Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation, Desalination 148 (2002) 31–37. [9] M. Khayet, G. Chowdhury, T. Matsuura, Surface modification of polyvinylidene fluoride pervaporation membranes, AIChE J. 48 (2002) 2833–2843. [10] T. Masuda, M. Takatsuka, B. Tang, T. Higashimura, Pervaporation of organic–liquid–water mixtures through substituted polyacetylene membranes, J. Membr. Sci. 49 (1990) 69–83. [11] M. Zhou, M. Persin, J. Sarrazin, Methanol removal from organic mixtures by pervaporation using polypyrrole membranes, J. Membr. Sci. 117 (1996) 303–309. [12] M. Khayet, T. Matsuura, Pervaporation and vacuum membrane distillation processes: modeling and experiments, AIChE J. 50 (2004) 1697–1712. [13] M. Khayet, M.M. Nasef, J.I. Mengual, Radiation grafted poly(ethylene terephthalate)-graft-polystyrene pervaporation membranes for organic/organic separation, J. Membr. Sci. 263 (2005) 77–95. [14] S. Ray, S.K. Ray, Effect of copolymer type and composition on separation characteristics of pervaporation membranes—a case study with separation of acetone–water mixtures, J. Membr. Sci. 270 (2006) 73–87. [15] Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke, Organics/water separation by pervaporation with a zeolite membrane, J. Membr. Sci. 117 (1996) 163–174. [16] A.M. Urtiaga, E.D. Gorri, J.K. Beasley, I. Ortiz, Mass transfer analysis of the pervaporative separation of chloroform from aqueous solutions in hollow fibers devices, J. Membr. Sci. 156 (1999) 275. [17] A.M. Gronda, S. Buechel, E.L. Cussler, Mass transfer in corrugated membranes, J. Membr. Sci. 165 (2000) 177.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet49.pdf
Size:
1005.64 KB
Format:
Adobe Portable Document Format

Collections