Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Rapid microwave hydrothermal synthesis of rare Earth-modified ZnO photocatalysts: Enhanced activity and comprehensive structural analysis

dc.contributor.authorBazta, Otman
dc.contributor.authorRamos Justicia, Juan Francisco
dc.contributor.authorUrbieta Quiroga, Ana Irene
dc.contributor.authorTrasobares, Susana
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorCalvino, Jose Juan
dc.contributor.authorHungría, Ana Belén
dc.date.accessioned2025-10-17T15:36:10Z
dc.date.available2025-10-17T15:36:10Z
dc.date.issued2025-10
dc.description© 2025 The Author(s). PR3/23–30813 CT15/23
dc.description.abstractThis study demonstrates that, under the specific synthesis conditions applied, the addition of rare earth ions (Ce³⁺, Y³⁺, Eu³⁺) to ZnO does not lead to their incorporation into the lattice as dopants but instead results in their surface decoration, as revealed by advanced nanoscale characterization. ZnO and rare earth-modified ZnO photocatalysts (ZnO:RE = ZnO:Eu, ZnO:Y, ZnO:Ce) with a rare earth (RE) concentration of 2 at.% were synthesized via a rapid and environmentally friendly microwave-assisted hydrothermal method. The effect of adding different RE elements on the structural, morphological, and photocatalytic properties of the samples was systematically investigated. A thorough characterization was conducted using Xray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and photoluminescence spectroscopy (PL) at various excitation wavelengths and temperatures. XRD analysis confirmed that all ZnO:RE samples retained the hexagonal wurtzite crystal structure of ZnO. FESEM images revealed that pure ZnO consisted of randomly distributed smooth nanosheets, while the addition of RE elements led to the formation of small particles dispersed over the nanosheet surfaces. A detailed structural analysis using STEM revealed that the rare earth elements formed structures decorating the surface of ZnO nanosheets rather than being fully incorporated into the ZnO lattice, indicating a dispersion of RE species over the ZnO matrix. This unique distribution significantly influenced the material’s properties. The photocatalytic performance of the ZnO:RE samples was evaluated through the degradation of methylene blue (MB), demonstrating superior activity compared to pure ZnO and TiO2-P25. Among the modified samples, the cerium-modified ZnO (ZnO:Ce) exhibited the highest MB degradation efficiency. Furthermore, PL spectroscopy combined with TEM analysis provided critical insights into the relationship between defect characteristics and photocatalytic activity, offering a deeper understanding of the mechanisms driving performance enhancement. These findings highlight the potential of rare earth surface structures-ZnO nanosheets heterojunctions as a strategy for optimizing the photocatalytic properties of ZnO-based materials.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipBanco Santander
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationO. Bazta, J.F. Ramos-Justicia, A. Urbieta, S. Trasobares, P. Fernández, J.J. Calvino, A.B. Hungría, Rapid microwave hydrothermal synthesis of rare Earth-modified ZnO photocatalysts: Enhanced activity and comprehensive structural analysis, Surfaces and Interfaces 74 (2025) 107657. https://doi.org/10.1016/j.surfin.2025.107657.
dc.identifier.doi10.1016/j.surfin.2025.107657
dc.identifier.essn2468-0230
dc.identifier.officialurlhttps://doi.org/10.1016/j.surfin.2025.107657
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S2468023025019091?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125064
dc.journal.titleSurfaces and Interfaces
dc.language.isoeng
dc.page.final107657-13
dc.page.initial107657-1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-142312NB-I00/ES/MICROSCOPIA ELECTRONICA DE TRANSMISION AVANZADA EX-SITU E IN-SITU APLICADA AL ESTUDIO DE NANOINTERFASES OXIDO-OXIDO Y METAL-OXIDO./
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu538.9
dc.subject.keywordZnO nanosheets
dc.subject.keywordSurface decoration
dc.subject.keywordSurface decoration
dc.subject.keywordCharge separation efficiency
dc.subject.keywordNanostructured photocatalysts
dc.subject.keywordRare earth modification
dc.subject.ucmFísica de materiales
dc.subject.unesco2211 Física del Estado Sólido
dc.titleRapid microwave hydrothermal synthesis of rare Earth-modified ZnO photocatalysts: Enhanced activity and comprehensive structural analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number74
dspace.entity.typePublication
relation.isAuthorOfPublicationf8df9b48-67a9-4518-9c37-a6bd1b37c150
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication.latestForDiscoveryf8df9b48-67a9-4518-9c37-a6bd1b37c150

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Surfaces and Interfaces(2025) 74, 107657.pdf
Size:
13.4 MB
Format:
Adobe Portable Document Format

Collections