Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A queueing system with returning customers and waiting line

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.date.accessioned2023-06-20T16:57:13Z
dc.date.available2023-06-20T16:57:13Z
dc.date.issued1995-05
dc.descriptionThe author would like to thank the anonymous referee for his comments which helped to improve the quality and clarity of the paper. This work was supported in part by the University Complutense of Madrid under grant PR161/93-4777.
dc.description.abstractWe consider a queueing system where a customer who finds all channels busy must decide either to join the queue or to retry after an exponentially distributed time. The performance of the system can be approximated by using the RTA approximation introduced by Wolff and Greenberg. We present numerical results demonstrating the performance of the approximation for various representative cases.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity Complutense of Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16245
dc.identifier.doi10.1016/0167-6377(95)00017-E
dc.identifier.issn0167-6377
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/016763779500017E
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57502
dc.issue.number4
dc.journal.titleOperations Research Letters
dc.language.isoeng
dc.page.final199
dc.page.initial191
dc.publisherElsevier
dc.relation.projectIDPR161/93-4777.
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordRetrial queues
dc.subject.keywordRTA approximation
dc.subject.keywordSimulation
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA queueing system with returning customers and waiting line
dc.typejournal article
dc.volume.number17
dcterms.referencesJ.R. Artalejo. Explicit formulae for the characteristics of the M/H2/1 retrial queue. J. Oper. Res. Soc., 44 (1993), pp. 309–313 N. Deul. Stationary conditions for multiserver queueing systems with repeated calls. Elektron. Informationsverarbeitung Kybern., 16 (1980), pp. 607–613 G.I. Falin. On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls. Adv. Appl. Probab., 16 (1984), pp. 447–448 G.I. Falin. A survey of retrial queues. Queueing Systems, 7 (1990), pp. 127–167 B.S. Greenberg. M/G/1 queueing systems with returning customers. J. Appl. Probab., 26 (1989), pp. 152–163 B.S. Greenberg, R.W. Wolff. An upper bound on the performance of queues with returning customers. J. Appl. Probab., 24 (1987), pp. 466–475 N. Jacobson. Basic Algebra I. Freeman, New York (1985) M.F. Neuts, B.M. Rao. Numerical investigation of a multiserver retrial model. Queueing Systems, 7 (1990), pp. 169–190 C.E.M. Pearce. Extended continued fractions, recurrence relations and two-dimensional Markov processes. Adv. Appl. Probab., 21 (1989), pp. 357–375 R.L. Tweedie. Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Cambridge Philos. Soc., 78 (1975), pp. 125–136 R.W.Wolff.Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs, NJ (1989)
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta69.pdf
Size:
410.7 KB
Format:
Adobe Portable Document Format

Collections