Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Chemical nonequilibrium for interacting bosons: applications to the pion gas

dc.contributor.authorFernández Fraile, Daniel
dc.contributor.authorGómez Nicola, Ángel
dc.date.accessioned2023-06-20T03:51:44Z
dc.date.available2023-06-20T03:51:44Z
dc.date.issued2009-09
dc.description© 2009 The American Physical Society. We acknowledge financial support from the Spanish research Projects No. FPA2007-29115-E, No. PR34- 1856-BSCH, No. CCG07-UCM/ESP-2628, No. FPA2008- 00592, No. FIS2008-01323, and from the FPI programme (No. BES-2005-6726).
dc.description.abstractWe consider an interacting pion gas in a stage of the system evolution where thermal but not chemical equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out T(ther) < T < T(chem) reached in relativistic heavy-ion collisions. Approximate particle number conservation is implemented by a nonvanishing pion number chemical potential mu(pi) within a diagrammatic thermal field-theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman rules are derived here and applied within the context of chiral perturbation theory to discuss thermodynamical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal self-energy. In particular, we derive the mu(pi) not equal 0 generalization of Luscher and Gell-Mann-Oakes-Renner-type relations. We pay special attention to the comparison with the conventional kinetic theory approach in the dilute regime, which allows for a check of consistency of our approach. Several phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out conditions, and Bose-Einstein pion condensation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish research Projects
dc.description.sponsorshipFPI programme
dc.description.sponsorshipBSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30321
dc.identifier.doi10.1103/PhysRevD.80.056003
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.80.056003
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44575
dc.issue.number5
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFPA2007-29115-E
dc.relation.projectIDPR34- 1856-BSCH
dc.relation.projectIDCCG07-UCM/ESP-2628
dc.relation.projectIDFPA2008- 00592
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDBES-2005-6726
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordChiral perturbation-theory
dc.subject.keywordHeavy-ion collisions
dc.subject.keywordBose-Einstein condensation
dc.subject.keywordQuantum-field theories
dc.subject.keywordFinite-temperature
dc.subject.keywordReal-time
dc.subject.keywordDispersion-relations
dc.subject.keywordImaginary-time
dc.subject.keywordMatter
dc.subject.keywordDynamics
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleChemical nonequilibrium for interacting bosons: applications to the pion gas
dc.typejournal article
dc.volume.number80
dcterms.references[1] M. Kataja and P. V. Ruuskanen, Phys. Lett. B 243, 181 (1990). [2] H. Bebie, P. Gerber, J. L. Goity, and H. Leutwyler, Nucl. Phys. B378, 95 (1992). [3] C. M. Hung and E. V. Shuryak, Phys. Rev. C 57, 1891 (1998). [4] P. Braun-Munzinger, K. Redlich, and J. Stachel, in Quark Gluon Plasma 3, edited by R. C. Hwa and Xin-Nian Wang (World Scientific Publishing, Singapore, 2004), pp. 491– 599. [5] P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003). [6] G. Torrieri, S. Jeon, and J. Rafelski, Phys. Rev. C 74, 024901 (2006). [7] J. Letessier and J. Rafelski, Eur. Phys. J. A 35, 221 (2008). [8] C. Song and V. Koch, Phys. Rev. C 55, 3026 (1997). [9] J. L. Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989). [10] A. Schenk, Phys. Rev. D 47, 5138 (1993). [11] J. L. Goity, Phys. Lett. B 319, 401 (1993). [12] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys. Rep. 227, 321 (1993). [13] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004); A. Dobado, F. J. Llanes- Estrada, and J. M. Torres-Rincon, Phys. Rev. D 79, 014002 (2009). [14] A. Dobado and J. R. Pelaez, Phys. Rev. D 59, 034004 (1998). [15] R. Baier, M. Dirks, and K. Redlich, Phys. Rev. D 55, 4344 (1997). [16] K. c. Chou, Z. b. Su, B. l. Hao, and L. Yu, Phys. Rep. 118, 1 (1985). [17] N. P. Landsman and C. G. van Weert, Phys. Rep. 145, 141 (1987). [18] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 082301 (2001). [19] V. L. Eletsky, J. I. Kapusta, and R. Venugopalan, Phys. Rev. D 48, 4398 (1993). [20] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001); M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034 (2003). [21] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, England, 2006). [22] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980). [23] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, New York, 2002), 4th ed.. [24] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [25] T. Altherr, Phys. Lett. B 341, 325 (1995). [26] A. Niegawa, Phys. Rev. D 40, 1199 (1989). [27] F. Gelis, Phys. Lett. B 455, 205 (1999). [28] R. Kobes, Phys. Rev. D 42, 562 (1990); 43, 1269 (1991). [29] Y. Fujimoto, H. Matsumoto, H. Umezawa, and I. Ojima, Phys. Rev. D 30, 1400 (1984); 31, 1527(E) (1985); H. Matsumoto, Y. Nakano, and H. Umezawa, Phys. Rev. D 31, 1495 (1985). [30] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [31] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [32] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). [33] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett. 102, 121601 (2009); Eur. Phys. J. C 62, 37, (2009). [34] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987). [35] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968). [36] D. Toublan, Phys. Rev. D 56, 5629 (1997). [37] M. Luscher, Commun. Math. Phys. 104, 177 (1986). [38] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997); A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [39] A. Dobado, A. Gomez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Rev. C 66, 055201 (2002). [40] A. Ayala, P. Amore, and A. Aranda, Phys. Rev. C 66, 045205 (2002); A. Ayala and J. Magnin, Phys. Rev. C 68, 014902 (2003). [41] R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986). [42] J. Zimanyi, G. I. Fai, and B. Jakobsson, Phys. Rev. Lett. 43, 1705 (1979); C. Greiner, C. Gong, and B. Muller, Phys. Lett. B 316, 226 (1993); R. Lednicky, V. Lyuboshitz, K. Mikhailov, Yu. Sinyukov, A. Stavinsky, and B. Erazmus, Phys. Rev. C 61, 034901 (2000); V. V. Begun and M. I. Gorenstein, Phys. Lett. B 653, 190 (2007). [43] D. Fernández-Fraile and A. Gómez Nicola, Phys. Rev. D 73, 045025 (2006); Int. J. Mod. Phys. E 16, 3010 (2007); Eur. Phys. J. A 31, 848 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola12libre.pdf
Size:
854.76 KB
Format:
Adobe Portable Document Format

Collections