Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology

dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorEssalhi, M.
dc.contributor.authorArmenta Deu, Carlos
dc.contributor.authorCojocaru, C.
dc.contributor.authorHilal, N.
dc.date.accessioned2023-06-20T03:42:49Z
dc.date.available2023-06-20T03:42:49Z
dc.date.issued2010-10-31
dc.description© 2010 Elsevier B.V. The authors wish to thank the financial support of the University Complutense of Madrid, UCM-BSCH (Project GR58/08, UCM group 910336). M. Essalhi is thankful to the Middle East Desalination Research Centre for the grant (MEDRC 06-AS007).
dc.description.abstractA solar thermal and photovoltaic-powered reverse osmosis (RO) desalination plant has been constructed and optimized for brackish water desalination. The central composite experimental design of orthogonal type and response surface methodology (RSM) have been used to develop predictive models for simulation and optimization of different responses such as the salt rejection coefficient, the specific permeate flux and the RO specific performance index that takes into consideration the salt rejection coefficient, the permeate flux, the energy consumption and the conversion factor. The considered input variables were the feed temperature, the feed flow-rate and the feed pressure. Analysis of variance (ANOVA) has been employed to test the significance of the RSM polynomial models. The optimum operating conditions have been determined using the step adjusting gradient method. An optimum RO specific performance index has been achieved experimentally under the obtained optimal conditions. The RO optimized plant guarantees a potable water production of 0.2 m(3)/day with energy consumption lower than 1.3 kWh/m(3).
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity Complutense of Madrid, UCM-BSCH
dc.description.sponsorshipMiddle East Desalination Research Centre
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26263
dc.identifier.doi10.1016/j.desal.2010.04.010
dc.identifier.issn0011-9164
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.desal.2010.04.010
dc.identifier.relatedurlhttp://www.sciencedirect.com/i
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44301
dc.issue.number2
dc.journal.titleDesalination
dc.language.isoeng
dc.page.final292
dc.page.initial284
dc.publisherElsevier Science Bv
dc.relation.projectIDGR58/08
dc.relation.projectIDMEDRC 06-AS007
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordReverse Osmosis
dc.subject.keywordDesalination
dc.subject.keywordResponse Surface Methodology
dc.subject.keywordSolar Energy
dc.subject.keywordOptimization
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleOptimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology
dc.typejournal article
dc.volume.number261
dcterms.references[1] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination 216 (2007) 1–76. [2] V.G. Molina, A. Casañas, Reverse osmosis, a key technology in combating water scarcity in Spain, Desalination 250 (2010) 950–955. [3] J. MacHarg, R. Truby, West coast researchers seek to demonstrate SWRO affordability, Desalin. Water Reuse Q. 14 (3) (2004) 1–18. [4] S. Loeb, S. Sourirajan, High flow porous membranes for separation of water from saline solutions, US Patent 3, 133, 132, 1964. [5] J. Cadotte, Interfacially synthesized reverse osmosis membranes, US Patent 4, 277, 344, 1981. [6] A. Al-Karaghouli, D. Renne, L.L. Kazmerski, Technical and economic assessment of photovoltaic-driven desalination systems: review, Renew. Energy 35 (2010) 323–328. [7] D.C. Montgomery, R.H. Myers, Response surface methodology: process and product in optimization using designed experiments, John Wiley & Sons, New York, NY, 1995. [8] M. Khayet, C. Cojocaru, M.C. García Payo, Application of response surface methodology and experimental design in direct contact membrane distillation, Ind. Eng. Chem. Res. 46 (2007) 5673–5685. [9] A.F. Ismail, P.Y. Lai, Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology, Sep. Purif. Tech. 40 (2) (2004) 191–207. [10] C. Cojocaru, M. Khayet, G. Zakrzewska-Trznadel, A. Jaworska, Modeling and multiresponse optimization of pervaporation of organic aqueous solutions using desirability function approach, J. Hazard. Mater. 167 (2009) 52–63. [11] M. Khayet, M.N. Abu Seman, N. Hilal, Response surface modelling and optimization of composite nanofiltration modified membranes, J. Membrane Sci. 349 (2010) 113–122. [12] M. Khayet, J.I. Mengual, Effect of salt type on mass transfer in reverse osmosis thin film composite membranes, Desalination 168 (2004) 383–390. [13] R.W. Baker, Membrane Technology and Applications, 2nd EditionJohn Wiley & Sons, West Sussex, England, 2004.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublicationc4a1afc3-6eec-45e4-8b8a-a1d68b4438be
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet30.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format

Collections