Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Exploring the hidden complexity: entropy analysis in pulse oximetry of female athletes

dc.contributor.authorCabanas, Ana M
dc.contributor.authorFuentes-Guajardo, Macarena
dc.contributor.authorSáez, Nicolás
dc.contributor.authorCatalán, Davidson
dc.contributor.authorCollao-Caiconte, Patricio O.
dc.contributor.authorMartín Escudero, María Del Pilar
dc.date.accessioned2024-07-11T10:47:50Z
dc.date.available2024-07-11T10:47:50Z
dc.date.issued2024
dc.description.abstractThis study examines the relationship between physiological complexity, as measured by Approximate Entropy (ApEn) and Sample Entropy (SampEn), and fitness levels in female athletes. Our focus is on their association with maximal oxygen consumption (𝑉𝑂2,𝑚𝑎𝑥). Our findings reveal a complex relationship between entropy metrics and fitness levels, indicating that higher fitness typically, though not invariably, correlates with greater entropy in physiological time series data; however, this is not consistent for all individuals. For Heart Rate (HR), entropy measures suggest stable patterns across fitness categories, while pulse oximetry (𝑆𝑝𝑂2) data shows greater variability. For instance, the medium fitness group displayed an ApEn(HR) = 0.57±0.13 with a coefficient of variation (CV) of 22.17 and ApEn(𝑆𝑝𝑂2) = 0.96±0.49 with a CV of 46.08%, compared to the excellent fitness group with ApEn(HR) = 0.60±0.09 with a CV of 15.19% and ApEn(𝑆𝑝𝑂2) =0.85±0.42 with a CV of 49.46%, suggesting broader physiological responses among more fit individuals. The larger standard deviations and CVs for 𝑆𝑝𝑂2 entropy may indicate the body’s proficient oxygen utilization at higher levels of physical demand. Our findings advocate for combining entropy metrics with wearable sensor technology for improved biomedical analysis and personalized healthcare.
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipANID
dc.description.sponsorshipMINEDUC
dc.description.statuspub
dc.identifier.citationBiosensors 2024, 14(1), 52; https://doi.org/10.3390/bios14010052
dc.identifier.doi10.3390/bios14010052
dc.identifier.issn2079-6374
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105957
dc.issue.number1
dc.journal.titleBiosensors
dc.language.isoeng
dc.page.initial52
dc.publisherMDPI
dc.relation.projectIDSA22I0178
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordPulse oximeter
dc.subject.keywordApproximate entropy
dc.subject.keywordSample entropy
dc.subject.keywordVO2,max
dc.subject.keywordWomen’s response to exercise
dc.subject.ucmMedicina
dc.subject.unesco32 Ciencias Médicas
dc.titleExploring the hidden complexity: entropy analysis in pulse oximetry of female athletes
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication773a796c-300d-4a3e-9e16-0e3880112a01
relation.isAuthorOfPublication.latestForDiscovery773a796c-300d-4a3e-9e16-0e3880112a01

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
biosensors-14-00052.pdf
Size:
763.72 KB
Format:
Adobe Portable Document Format

Collections