Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiplier ideals of plane curve singularities via Newton polygons

dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorGonzález Villa, Manuel
dc.contributor.authorGuzmán Durán, Carlos R.
dc.contributor.authorRobredo Buces, Miguel
dc.date.accessioned2023-06-16T14:24:43Z
dc.date.available2023-06-16T14:24:43Z
dc.date.issued2021-09-29
dc.description.abstractWe give an effective method to determine the multiplier ideals and jumping numbers associated with a curve singularity C in a smooth surface. We characterize the multiplier ideals in terms of certain Newton polygons, generalizing a theorem of Howald, which holds when C is Newton non-degenerate with respect to some local coordinate system. The method uses toroidal embedded resolutions and generating sequences of families of valuations, and can be extended to some classes of higher dimensional hypersurface singularities.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73464
dc.identifier.citationGonzález Pérez PD, González Villa M, Guzmán Durán CR, Robredo Buces M. Multiplier ideals of plane curve singularities via Newton polygons. Communications in Algebra 2024;52:1142–62. https://doi.org/10.1080/00927872.2023.2257799.
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4967
dc.language.isoeng
dc.relation.projectIDMTM2016-76868-C2-1-P; SEV-2015-0554
dc.rights.accessRightsopen access
dc.subject.cduGeometría algebraica
dc.subject.keywordmultiplier ideals
dc.subject.keywordjumping numbers
dc.subject.keywordplane curve singularities
dc.subject.keywordtoroidal resolutions
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmGeometria algebraica
dc.subject.unesco12 Matemáticas
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleMultiplier ideals of plane curve singularities via Newton polygons
dc.typejournal article
dcterms.references[AAD16] M. Alberich-Carramiñana, J. Álvarez Montaner, and F. Dachs-Cadefau, Multiplier ideals in twodimensional local rings with rational singularities, Michigan Math. J. 65 (2016), no. 2, 287–320. MR 3510908 (2) [ACMB20] M. Alberich-Carramiñana, J. Álvarez Montaner, and G. Blanco, Monomial generators of complete planar ideals, to appear in Journal of Algebra and Its Applications, (2020), https://doi.org/10. 1142/S0219498821500328. (2, 19) [AO96] N. A’Campo and M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math. 33 (1996), no. 4, 1003–1033. MR 1435467 (11) [BL10] C. Berkesch and A. Leykin, Algorithms for bernstein–sato polynomials and multiplier ideals, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, 2010, pp. 99–106. (1) [Bud12] N. Budur, Singularity invariants related to Milnor fibers: survey, Zeta functions in algebra and geometry, Contemp. Math., vol. 566, Amer. Math. Soc., Providence, RI, 2012, pp. 161–187. MR 2858923 (1) [CG03] A. Campillo and C. Galindo, The Poincaré series associated with finitely many monomial valuations, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 433–443. MR 1981210 (7) [CLS11] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (8, 9) [CNL14] Pi. Cassou-Noguès and A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves. II, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 82–135. MR 3329028 (3, 11, 14) [DGN08] F. Delgado, C. Galindo, and A. Núñez, Generating sequences and Poincaré series for a finite set of plane divisorial valuations, Adv. Math. 219 (2008), no. 5, 1632–1655. MR 2458149 (3, 7, 8) [DO95] L. Dung Tráng and M. Oka, On resolution complexity of plane curves, Kodai Math. J. 18 (1995), no. 1, 1–36. MR 1317003 (11) [ELSV04] L. Ein, R. Lazarsfeld, K. E. Smith, and D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. MR 2068967 (1, 5) [Ewa96] G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer-Verlag, New York, 1996. MR 1418400 (8, 10) [FJ04] C. Favre and M. Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722 (1, 3, 19, 20) [FJ05] , Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), no. 3, 655–684. MR 2138140 (1) [Ful93] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037 (8) [GD18] C.R. Guzmán Durán, Ideales multiplicadores de curvas planas irreducibles, Ph.D. thesis, Centro de investigación en matemáticas, 2018, available at http://cimat.repositorioinstitucional.mx/jspui/ handle/1008/725. (2) [GGP19b] E.R. García Barroso, P.D. González Perez, and Patrick Popescu-Pampu, The valuative tree is the projective limit of Eggers-Wall trees, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 4051–4105. MR 3999063 (3, 15, 19, 20, 21) [GGP20] , The combinatorics of plane curve singularities. How Newton polygons blossom into lotuses, Handbook of Geometry and Topology of Singularities I (José Luis Cisneros-Molina, Lê Dung Tráng, and José Seade, eds.), Springer International Publishing, 2020, pp. 1–150. (2, 3, 4, 8, 11, 12, 13, 14, 15, 19, 21) [Gon03] P.D. González Pérez, Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1819–1881. MR 2038781 (11, 16) [HJ11] E. Hyry and T. Järvilehto, Jumping numbers and ordered tree structures on the dual graph, Manuscripta Math. 136 (2011), no. 3-4, 411–437. MR 2844818 (2) [HJ18] , A formula for jumping numbers in a two-dimensional regular local ring, J. Algebra 516 (2018), 437–470. MR 3863487 (2) [How01] J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2665– 2671 (electronic). MR 1828466 (2, 17) [How03] , Multiplier Ideals of Sufficiently General Polynomials, arXiv Mathematics e-prints (2003), math/0303203. (2, 3, 17) [Jär11] T. Järvilehto, Jumping numbers of a simple complete ideal in a two-dimensional regular local ring, Mem. Amer. Math. Soc. 214 (2011), no. 1009, viii+78. MR 2856648 (2) [Jon15] M. Jonsson, Dynamics on Berkovich spaces in low dimensions, Berkovich spaces and applications, Lecture Notes in Math., vol. 2119, Springer, Cham, 2015, pp. 205–366. MR 3330767 (1, 20) [Laz04] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 49, Springer-Verlag, Berlin, 2004, Positivity for vector bundles, and multiplier ideals. MR 2095472 (1, 4, 5, 21) [Nai09] D. Naie, Jumping numbers of a unibranch curve on a smooth surface, Manuscripta Math. 128 (2009), no. 1, 33–49. MR 2470185 (2) [Oda88] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15, Springer-Verlag, Berlin, 1988, An introduction to the theory of toric varieties, Translated from the Japanese. MR 922894 (8) [Oka96] M. Oka, Geometry of plane curves via toroidal resolution, Algebraic geometry and singularities (La Rábida, 1991), Progr. Math., vol. 134, Birkhäuser, Basel, 1996, pp. 95–121. MR 1395177 (11) [Pop03] P. Popescu-Pampu, Approximate roots, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 285–321. MR 2018562 (6) [RB19] M. Robredo Buces, Invariants of singularities, generating sequences and toroidal structures, Ph.D. thesis, Universidad Complutense de Madrid, 2019, available at https://www.icmat.es/Thesis/2019/ Tesis_Miguel_Robredo.pdf. (2, 3, 6, 8, 16, 19) [Shi11] T. Shibuta, Algorithms for computing multiplier ideals, J. Pure Appl. Algebra 215 (2011), no. 12, 2829–2842. MR 2811565 (1) [Spi90] M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), no. 1, 107–156. MR 1037606 (3, 7, 20) [ST07] K.E. Smith and H.M. Thompson, Irrelevant exceptional divisors for curves on a smooth surface, Algebra, geometry and their interactions, Contemp. Math., vol. 448, Amer. Math. Soc., Providence, RI, 2007, pp. 245–254. MR 2389246 (2) [ST12] K. Schwede and K. Tucker, A survey of test ideals, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 39–99. MR 2932591 (1) [Tuc10a] K. Tucker, Jumping numbers and multiplier ideals on algebraic surfaces, ProQuest LLC, Ann Arbor, MI, 2010, Thesis (Ph.D.)–University of Michigan. MR 2736766 (2) [Tuc10b] , Jumping numbers on algebraic surfaces with rational singularities, Trans. Amer. Math. Soc. 362 (2010), no. 6, 3223–3241. MR 2592954 (2) [Zha19] M. Zhang, Multiplier ideals of analytically irreducible plane curves, arXiv e-prints (2019), arXiv:1907.06281. (2)
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalez_perez_multiplier_cbcy_nc.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format

Collections