Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles

dc.contributor.authorReche Gallardo, Pedro Antonio
dc.contributor.authorGlutting, John-Paul
dc.contributor.authorZhang, Hong
dc.contributor.authorReinherz, Ellis L
dc.date.accessioned2023-06-20T09:48:21Z
dc.date.available2023-06-20T09:48:21Z
dc.date.issued2004
dc.description.abstractWe introduced previously an on-line resource, RANKPEP that uses position specific scoring matrices (PSSMs) or profiles for the prediction of peptide-MHC class I (MHCI) binding as a basis for CD8 T-cell epitope identification. Here, using PSSMs that are structurally consistent with the binding mode of MHC class II (MHCII) ligands, we have extended RANKPEP to prediction of peptide-MHCII binding and anticipation of CD4 T-cell epitopes. Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can be targeted for peptide binding predictions in RANKPEP. Because appropriate processing of antigenic peptides must occur prior to major histocompatibility complex (MHC) binding, cleavage site prediction methods are important adjuncts for T-cell epitope discovery. Given that the C-terminus of most MHCI-restricted epitopes results from proteasomal cleavage, we have modeled the cleavage site from known MHCI-restricted epitopes using statistical language models. The RANKPEP server now determines whether the C-terminus of any predicted MHCI ligand may result from such proteasomal cleavage. Also implemented is a variability masking function. This feature focuses prediction on conserved rather than highly variable protein segments encoded by infectious genomes, thereby offering identification of invariant T-cell epitopes to thwart mutation as an immune evasion mechanism.
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/9334
dc.identifier.doiDOI 10.1007/s00251-004-0709-7
dc.identifier.issn0093-7711
dc.identifier.officialurlhttp://link.springer.com/article/10.1007/s00251-004-0709-7
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50387
dc.issue.number6
dc.journal.titleImmunogenetics
dc.language.isoeng
dc.page.final19
dc.page.initial405
dc.publisherSpringer-Verlag
dc.rights.accessRightsopen access
dc.subject.cdu612.017
dc.subject.cdu57:004
dc.subject.keywordEpitopes
dc.subject.keywordMajor histocompatibility complex
dc.subject.keywordPrediction
dc.subject.keywordProfile
dc.subject.keywordProteasome
dc.subject.ucmInmunología
dc.subject.ucmBioinformática
dc.subject.unesco2412 Inmunología
dc.titleEnhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles
dc.typejournal article
dc.volume.number56
dspace.entity.typePublication
relation.isAuthorOfPublication372eb700-f6f8-4156-80f5-b8f7c9edafe1
relation.isAuthorOfPublication.latestForDiscovery372eb700-f6f8-4156-80f5-b8f7c9edafe1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
24.Reche_etal_Immung_2004.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections