On the substitution theorem for rings of semialgebraic functions
Loading...
Download
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge Univ. Press
Citation
Abstract
Let R⊂F be an extension of real closed fields and S(M,R) the ring of (continuous) semialgebraic functions on a semialgebraic set M⊂Rn. We prove that every R-homomorphism φ:S(M,R)→F is essentially the evaluation homomorphism at a certain point p∈Fn \em adjacent \em to the extended semialgebraic set MF. This type of result is commonly known in Real Algebra as Substitution Theorem. In case M is locally closed, the results are neat while the non locally closed case requires a more subtle approach and some constructions (weak continuous extension theorem, \em appropriate immersion \em of semialgebraic sets) that have interest on their own. We afford the same problem for the ring of bounded (continuous) semialgebraic functions getting results of a different nature.