Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sub-bandgap spectral photo-response analysis of Ti supersaturated Si

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T03:40:48Z
dc.date.available2023-06-20T03:40:48Z
dc.date.issued2012-11-05
dc.description© 2012 American Institute of Physics. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations and the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. García-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thanks Professor A. Martí and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken.
dc.description.abstractWe have analyzed the increase of the sheet conductance (Delta G(square)) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high Delta G(square), even higher than that measured in a silicon reference sample. This increase in the Delta G(square) magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25807
dc.identifier.doi10.1063/1.4766171
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4766171
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44230
dc.issue.number19
dc.journal.titleApplied physics Letters
dc.language.isoeng
dc.publisherAmer Inst Physics
dc.relation.projectIDNUMANCIA II (S2009/ENE-1477)
dc.relation.projectID(JCI-2011-10402)
dc.relation.projectID(JCI-2011-11471)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSolar-Cells
dc.subject.keywordSemiconductors.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleSub-bandgap spectral photo-response analysis of Ti supersaturated Si
dc.typejournal article
dc.volume.number101
dcterms.references1) A. Rogalski, Prog. Quantum Electron. 27, 59–210 (2003). 2) D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer, 2004), Vol. 94, pp. 1–50. 3) A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, Appl. Phys. Lett. 99, 073503 (2011). 4) M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, Appl. Phys. A: Mater. Sci. Process. 98, 589–594 (2010). 5) J. Olea, Á. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011). 6) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014–5017(1997). 7) A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146–152 (2012). 8) N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012). 9) J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Raichoudhury, J. R. McCormick, and H. C. Mollenkopf, IEEE Trans. Electron Devices 27(4), 677–687 (1980). 10) N. F. Mott, Adv. Phys. 21(94), 785–823 (1972). 11) A. Luque, A. Martí, E. Antolín, and C. Tablero, Phys. B: Condens. Matter 382(1–2), 320–327 (2006). 12) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnon, Phys. Rev. B 79, 165203 (2009). 13) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 14) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011). 15) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 16) D. B. Williams and B. C. Carter, Transmission Electron Microscopy: Difraction (Plenum, New York, USA, 1996). 17) L. J. van der Pauw, Philips Tech. Rev. 20, 220–224 (1958). 18) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115(2009). 19) R. A. Sintón and A. Cuevas, Appl. Phys. Lett. 69, 2510-2512 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscovery838d6660-e248-42ad-b8b2-0599f3a4542b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,09libre.pdf
Size:
612.96 KB
Format:
Adobe Portable Document Format

Collections