Sub-bandgap spectral photo-response analysis of Ti supersaturated Si
dc.contributor.author | Martil De La Plaza, Ignacio | |
dc.contributor.author | García Hemme, Eric | |
dc.contributor.author | García Hernansanz, Rodrigo | |
dc.contributor.author | González Díaz, Germán | |
dc.contributor.author | Olea Ariza, Javier | |
dc.contributor.author | Prado Millán, Álvaro Del | |
dc.date.accessioned | 2023-06-20T03:40:48Z | |
dc.date.available | 2023-06-20T03:40:48Z | |
dc.date.issued | 2012-11-05 | |
dc.description | © 2012 American Institute of Physics. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations and the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. García-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thanks Professor A. Martí and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken. | |
dc.description.abstract | We have analyzed the increase of the sheet conductance (Delta G(square)) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high Delta G(square), even higher than that measured in a silicon reference sample. This increase in the Delta G(square) magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25807 | |
dc.identifier.doi | 10.1063/1.4766171 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.4766171 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44230 | |
dc.issue.number | 19 | |
dc.journal.title | Applied physics Letters | |
dc.language.iso | eng | |
dc.publisher | Amer Inst Physics | |
dc.relation.projectID | NUMANCIA II (S2009/ENE-1477) | |
dc.relation.projectID | (JCI-2011-10402) | |
dc.relation.projectID | (JCI-2011-11471) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Solar-Cells | |
dc.subject.keyword | Semiconductors. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Sub-bandgap spectral photo-response analysis of Ti supersaturated Si | |
dc.type | journal article | |
dc.volume.number | 101 | |
dcterms.references | 1) A. Rogalski, Prog. Quantum Electron. 27, 59–210 (2003). 2) D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer, 2004), Vol. 94, pp. 1–50. 3) A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, Appl. Phys. Lett. 99, 073503 (2011). 4) M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, Appl. Phys. A: Mater. Sci. Process. 98, 589–594 (2010). 5) J. Olea, Á. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011). 6) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014–5017(1997). 7) A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146–152 (2012). 8) N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012). 9) J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Raichoudhury, J. R. McCormick, and H. C. Mollenkopf, IEEE Trans. Electron Devices 27(4), 677–687 (1980). 10) N. F. Mott, Adv. Phys. 21(94), 785–823 (1972). 11) A. Luque, A. Martí, E. Antolín, and C. Tablero, Phys. B: Condens. Matter 382(1–2), 320–327 (2006). 12) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnon, Phys. Rev. B 79, 165203 (2009). 13) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 14) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011). 15) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 16) D. B. Williams and B. C. Carter, Transmission Electron Microscopy: Difraction (Plenum, New York, USA, 1996). 17) L. J. van der Pauw, Philips Tech. Rev. 20, 220–224 (1958). 18) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115(2009). 19) R. A. Sintón and A. Cuevas, Appl. Phys. Lett. 69, 2510-2512 (1996). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6db57595-2258-46f1-9cff-ed8287511c84 | |
relation.isAuthorOfPublication | 765f38c4-71cb-441b-b2a8-d88c5cdcf086 | |
relation.isAuthorOfPublication | 838d6660-e248-42ad-b8b2-0599f3a4542b | |
relation.isAuthorOfPublication | a5ab602d-705f-4080-b4eb-53772168a203 | |
relation.isAuthorOfPublication | 12efa09d-69f7-43d4-8a66-75d05b8fe161 | |
relation.isAuthorOfPublication | 7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0 | |
relation.isAuthorOfPublication.latestForDiscovery | 838d6660-e248-42ad-b8b2-0599f3a4542b |
Download
Original bundle
1 - 1 of 1