Probando la elasticidad de un material 2D
Loading...
Download
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este trabajo presenta una revisión bibliográfica sobre las propiedades mecánicas y electrónicas de varios materiales bidimensionales (2D), en particular del grafeno y del disulfuro de molibdeno (MoS2). Se analizan y comparan diferentes enfoques teóricos (Teoría del Funcional de la Densidad: DFT, Dinámica Molecular: DM, Tight Binding Model: TBMD) y experimentales (nanoindentación mediante Microscopía de Fuerza Atómica, Espectroscopía Raman, Microscopía Electrónica de Barrido) para evaluar la elasticidad, resistencia y ductilidad de estos materiales bajo distintas deformaciones. Además, se estudian los efectos de la temperatura y la presencia de defectos sobre las propiedades del grafeno. Los resultados con DFT muestran buena concordancia entre teoría y experimento, mientras que la DM tiende a subestimar las propiedades de los materiales estudiados. El grafeno se posiciona como el material estudiado con mejores propiedades mecánicas, alcanzando un Módulo de Young de 1 TPa}. También se compara la utilidad de estos materiales en función de sus propiedades mecánicas y electrónicas. Finalmente, se identifican desafíos y se proponen posibles líneas de investigación para otros materiales 2D.
This work presents a bibliographic review of the mechanical and electronic properties of some two-dimensional (2D) materials, specifically graphene and molybdenum disulfide (MoS2). Various theoretical approaches (Density Functional Theory: DFT, Molecular Dynamics: DM, Tight Binding Model: TBMD) and experimental techniques (nanoindentation using Atomic Force Microscopy, Raman spectroscopy, Scanning Electron Microscopy) are analyzed and compared to assess the elasticity, strength, and ductility of these materials under different types of deformation. Additionally, the effects of temperature and the presence of defects on the properties of graphene are studied. The results with DFT show good agreement between theory and experiment, while DM tends to underestimate the properties of the studied materials. Graphene stands out as the studied material with the best mechanical properties, reaching a Young's modulus of 1 TPa. The usefulness of these materials is also compared based on their mechanical and electronic properties. Finally, key challenges are identified and possible future research directions for others 2D materials are proposed.
This work presents a bibliographic review of the mechanical and electronic properties of some two-dimensional (2D) materials, specifically graphene and molybdenum disulfide (MoS2). Various theoretical approaches (Density Functional Theory: DFT, Molecular Dynamics: DM, Tight Binding Model: TBMD) and experimental techniques (nanoindentation using Atomic Force Microscopy, Raman spectroscopy, Scanning Electron Microscopy) are analyzed and compared to assess the elasticity, strength, and ductility of these materials under different types of deformation. Additionally, the effects of temperature and the presence of defects on the properties of graphene are studied. The results with DFT show good agreement between theory and experiment, while DM tends to underestimate the properties of the studied materials. Graphene stands out as the studied material with the best mechanical properties, reaching a Young's modulus of 1 TPa. The usefulness of these materials is also compared based on their mechanical and electronic properties. Finally, key challenges are identified and possible future research directions for others 2D materials are proposed.












