Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

AI pricing algorithms under platform competition

dc.contributor.authorSánchez Cartas, Juan Manuel
dc.contributor.authorKatsamakas, Evangelos
dc.date.accessioned2024-02-29T09:34:46Z
dc.date.available2024-02-29T09:34:46Z
dc.date.issued2024
dc.description.abstractPlatforms play an essential role in the modern economy. At the same time, due to advances in artificial intelligence (AI), algorithms are becoming more widely used for pricing and other business functions. Previous literature examined algorithmic pricing, but not in the context of network effects and platforms. Moreover, platform competition literature has not considered how algorithms may affect competition. We study the performance of AI pricing algorithms (Q-learning and Particle Swarm Optimization) and naïve algorithms (price-matching) under platform competition. We find that algorithms set an optimal price structure that internalizes network effects. However, no algorithm is always the best because profitability depends on the type of competing algorithms and market characteristics, such as differentiation and network effects. Additionally, algorithms learn autonomously when an equilibrium is unstable and avoid it. When algorithm adoption is an endogenous strategic decision, several algorithms can be adopted in equilibrium; we characterize the conditions for the various outcomes and show that the equilibrium and platform profits are sensitive to algorithm design changes. Overall, our research suggests that AI algorithms can be effective in the presence of network effects, and platforms are likely to adopt a variety of algorithms. Lastly, we reflect on the business value of AI and identify opportunities for future research at the intersection of AI algorithms and platforms.eng
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipConferencia de Rectores de las Universidades Españolas
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas
dc.description.statuspub
dc.identifier.citationSanchez-Cartas, J.M., Katsamakas, E. AI pricing algorithms under platform competition. Electron Commer Res (2024). https://doi.org/10.1007/s10660-024-09821-w
dc.identifier.doi10.1007/s10660-024-09821-w
dc.identifier.essn1572-9362
dc.identifier.issn1389-5753
dc.identifier.officialurlhttps://doi.org/10.1007/s10660-024-09821-w
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s10660-024-09821-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101835
dc.journal.titleElectronic Commerce Research
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.jelL41
dc.subject.jelL12
dc.subject.jelL13
dc.subject.jelD43
dc.subject.jelD21
dc.subject.keywordAlgorithmic pricing
dc.subject.keywordArtificial intelligence
dc.subject.keywordCompetition
dc.subject.keywordPlatforms
dc.subject.keywordQ-learning
dc.subject.keywordReinforcement learning
dc.subject.keywordParticle swarm optimization (PSO)
dc.subject.ucmEconomía industrial
dc.subject.unesco5309 Organización Industrial y Políticas Gubernamentales
dc.titleAI pricing algorithms under platform competition
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationb2dd9034-c980-46a1-adde-b6d39d7d8fd4
relation.isAuthorOfPublication.latestForDiscoveryb2dd9034-c980-46a1-adde-b6d39d7d8fd4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AI_pricing_algorithms.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format

Collections