Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effect of thermal treatment on the interfacial shear toughness of an aluminium composite laminate

dc.contributor.authorCepeda Jiménez, C. M.
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorPozuelo, M.
dc.contributor.authorRuano, O. A,
dc.contributor.authorCarreño, F.
dc.date.accessioned2023-06-20T03:39:30Z
dc.date.available2023-06-20T03:39:30Z
dc.date.issued2010-04-25
dc.description© 2009 Elsevier B.V. All rights reserved. Financial support from CICYT (Project MAT2003-01172 and MAT2006-11202) is gratefully acknowledged. C.M. Cepeda- Jimenez thanks the Spanish National Research Council (CSIC) for a I3P contract. We also thank F.F. Gonzalez-Rodriguez for assistance during hot rolling. Finally, an especial mention in memory of P.J. Gonzalez-Aparicio for his help and assistance with electron microscopy during all these years is made.
dc.description.abstractThe microstructure and mechanical properties in the interface region of a multilayer composite laminate based on Al-Zn (Al 7075) and Al-Cu (Al 2024) alloys have been mainly characterized by EBSD and shear tests. It is shown that varying solution heat treatments affect the microstructure of the constituent aluminium alloys in the bonding region and, as a consequence, the interfacial mechanical properties. The increase in the solution treatment time improves the interfacial toughness of the multilayer aluminium laminate due to higher intrinsic toughness of the constituent aluminium alloys.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipSpanish National Research Council (CSIC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25415
dc.identifier.doi10.1016/j.msea.2009.12.019
dc.identifier.issn0921-5093
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.msea.2009.12.019
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44180
dc.issue.number10-may
dc.journal.titleMaterials Science and Engineering A-Structural Materials Properties Microstructure and Processing
dc.language.isoeng
dc.page.final2587
dc.page.initial2579
dc.publisherElsevier Science SA
dc.relation.projectIDMAT2003-01172
dc.relation.projectIDMAT2006-11202
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordZn-Mg Alloy
dc.subject.keywordThin-Films
dc.subject.keywordStrength
dc.subject.keywordMicrostructure
dc.subject.keywordPrecipitation
dc.subject.keywordFracture
dc.subject.keywordGrowth
dc.subject.ucmFísica de materiales
dc.titleEffect of thermal treatment on the interfacial shear toughness of an aluminium composite laminate
dc.typejournal article
dc.volume.number527
dcterms.references[1] M.E. Launey, R.O. Ritchie, Adv. Mater. 21 (2009) 1–8. [2] C.M. Cepeda-Jiménez, J.M. García-Infanta, M. Pozuelo, O.A. Ruano, F. Carreñoo, Scripta Mater. 61 (2009) 407–410. [3] C.M. Cepeda-Jiménez, M. Pozuelo, J.M. García-Infanta, O.A. Ruano, F. Carreño, Metall. Mater. Trans. A 40 (2009) 69–79. [4] H. Danesh Manesh, H.Sh. Shahabi, J. Alloy Compd. 476 (2008) 292–299. [5] M.Z. Quadir, A. Wolz, M. Hoffman, M. Ferry, Scripta Mater. 58 (2008) 959–962. [6] G.P. Chaudhari, V. Acoff, Compos. Sci. Technol. 69 (2009) 1667–1675. [7] J. Zhang, J.J. Lewandowski, J. Mater. Sci. 29 (1994) 4022–4026. [8] S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Compos. Sci. Technol. 69 (2009) 1936–1941. [9] A.G. Evans, J.W. Hutchinson, Acta Metall. Mater. 43 (1995) 2507–2530. [10] M.S. Hu, A.G. Evans, Acta Metall. 37 (1989) 917–925. [11] K.J.M. Papis, B. Hallstedt, J.F. Löffler, P.J. Uggowitzer, Acta Mater. 56 (2008) 3036–3043. [12] A. Deschamps, S. Ringeval, G. Texier, L. Delfaut-Durut, Mater. Sci. Eng. A517 (2009) 361–368. [13] N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Acta Mater. 54 (2006) 3055–3066. [14] J.E. Hatch (Ed.), Aluminium: Properties and Physical Metallurgy, ASM, Metals Park, Ohio, 1984. [15] C.M. Cepeda-Jiménez, R.C. Alderliesten, O.A. Ruano, F. Carre˜no, Compos. Sci. Technol. 69 (2009) 343–348. [16] G.E. Dieter, Mechanical Metallurgy, SI Metric, UK, 1988, pp. 12–15. [17] C.E. Campbell, L.A. Bendersky, W.J. Boettinger, R. Ivester, Mater. Sci. Eng. A 430 (2006) 15–26. [18] Y. Xue, H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Acta Mater. 55 (2007) 1975–1984. [19] M.Z. Quadir, O. Al-Buhamad, L. Bassman, M. Ferry, Acta Mater. 55 (2007) 5438–5448. [20] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomenon, 2nd ed., Elsevier, 2004. [21] R.K. Islamgaliev, N.F. Yunusova, I.N. Sabirov, A.V. Sergueeva, R.Z. Valiev, Mater. Sci. Eng. A 319–321 (2001) 877–881. [22] H. Jazaeri, F.J. Humphreys, Acta Mater. 52 (2004) 3239–3250. [23] J.P. Lokker, A.J. Böttger, W.G. Sloof, F.D. Tichelaar, G.C.A.M. Janssen, S. Radelaar, Acta Mater. 49 (2001) 1339–1349. [24] J. Dennis, P.S. Bate, F.J. Humphreys, Acta Mater. 57 (2009) 4539–4547. [25] D. Dumont, A. Deschamps, Y. Brechet, Mater. Sci. Eng. A 356 (2003) 326–336. [26] B. Verlinden, P. Wouters, H.J. McQueen, E. Aernoudt, L. Delaey, S. Cauwenberg, Mater. Sci. Eng. A123 (1990) 229–237. [27] Z. Huda, N.I. Taib, T. Zaharinie, Mater. Chem. Phys. 113 (2009) 515–517. [28] Y. Huang, N. Ridley, F.J. Humphreys, J.-Z. Cui, Mater. Sci. Eng. A 266 (1999) 295–302. [29] J.W. Hutchinson, A.G. Evans, Acta Mater. 48 (2000) 125–135. [30] A. Deschamps, G. Texier, S. Ringeval, L. Delfaut-durut, Mater. Sci. Eng. A 501 (2009) 133–139.
dspace.entity.typePublication
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication.latestForDiscoveryc834e5a4-3450-4ff7-8ca1-663a43f050bb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HidalgoP07.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format

Collections