Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Higgs effective potential in a perturbed Robertson-Walker background

dc.contributor.authorLópez Maroto, Antonio
dc.contributor.authorPrada, Francisco
dc.date.accessioned2023-06-19T13:29:05Z
dc.date.available2023-06-19T13:29:05Z
dc.date.issued2014-12-31
dc.description© 2014 American Physical Society. We would like to thank S. Odintsov and E. Elizalde for useful comments. This work has been supported by MICINN (Spain) Projects No. FIS2011-23000, No. AYA2010-21231-C02-01, Consolider-Ingenio MULTIDARK CSD2009-00064, and Centro de Excelencia Severo Ochoa Programme under Grant No. SEV-2012-0249.
dc.description.abstractWe calculate the one-loop effective potential of a scalar field in a Robertson-Walker background with scalar metric perturbations. A complete set of orthonormal solutions of the perturbed equations is obtained by using the adiabatic approximation for comoving observers. After analyzing the problem of renormalization in inhomogeneous backgrounds, we get the explicit contribution of metric perturbations to the effective potential. We apply these results to the Standard Model Higgs field and evaluate the effects of metric perturbations on the Higgs mass and on its vacuum expectation value. Space-time variations are found, which are proportional to the gravitational slip parameter, with a typical amplitude of the order of Δϕ/ϕ ≃ 10−11 on cosmological scales. We also discuss possible astrophysical signatures in the Solar System and in the MilkyWay that could open new possibilities to explore the symmetry breaking sector of the electroweak interactions.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Spain)
dc.description.sponsorshipConsolider-Ingenio MULTIDARK CSD2009-00064
dc.description.sponsorshipCentro de Excelencia Severo Ochoa Programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28993
dc.identifier.doi10.1103/PhysRevD.90.123541
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.90.123541
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33836
dc.issue.number12
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-23000
dc.relation.projectIDAYA2010-21231-C02-01
dc.relation.projectIDSEV-2012-0249
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleHiggs effective potential in a perturbed Robertson-Walker background
dc.typejournal article
dc.volume.number90
dcterms.references[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). [2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). [3] G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion, and S. Kraml, Phys. Rev. D 88, 075008 (2013). [4] M.V. Marono (for the CMS Collaboration), arXiv:1409.1711. [5] C. Alvarez and R. B. Mann, Phys. Rev. D 54, 5954 (1996); Gen. Relativ. Gravit. 29, 245 (1997). [6] M. Maggiore, Phys. Rev. D 83, 063514 (2011). [7] J. Solá, J. Phys. Conf. Ser. 453, 012015 (2013); Int. J. Mod. Phys. A 29, 1444016 (2014). [8] J. S. Schwinger, Phys. Rev. 82, 914 (1951); B. S. DeWitt, Phys. Rep. 19, 295 (1975); P. C.W. Davies, S. A. Fulling, S. M. Christensen, and T. S. Bunch, Ann. Phys. (N.Y.) 109, 108 (1977); T. S. Bunch and P. C.W. Davies, J. Phys. A 11, 1315 (1978); I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (Tomsk Pedagogical Inst., Tomsk, 1992). [9] F. Sobreira, B. J. Ribeiro, and I. L. Shapiro, Phys. Lett. B 705, 273 (2011). [10] M. Asorey, P.M. Lavrov, B. J. Ribeiro, and I. L. Shapiro, Phys. Rev. D 85, 104001 (2012). [11] E. Elizalde and S. D. Odintsov, Phys. Lett. B 303, 240 (1993); Russ. Phys. J. 37, 25 (1994); Phys. Lett. B 321, 199 (1994). [12] L. Parker and S. A. Fulling, Phys. Rev. D 9, 341 (1974); S. A. Fulling and L. Parker, Ann. Phys. (N.Y.) 87, 176 (1974). [13] A. Ringwald, Ann. Phys. (N.Y.) 177, 129 (1987) [14] S. Sinha and B. L. Hu, Phys. Rev. D 38, 2423 (1988). [15] W. H. Huang, Classical Quantum Gravity 10, 2021 (1993). [16] W. H. Huang, Classical Quantum Gravity 8, 83 (1991); Phys. Rev. D 48, 3914 (1993). [17] F. D. Albareti, J. A. R. Cembranos, and A. L. Maroto, Phys. Rev. D 90, 123509 (2014); Int. J. Mod. Phys. D 23, 1442019 (2014). [18] P. O. Kazinski, Phys. Rev. D 80, 124020 (2009). [19] N. D. Birrell and P. C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982). [20] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973). [21] H. Osborn, Nucl. Phys. B363, 486 (1991); I. Jack and H. Osborn, Nucl. Phys. B883, 425 (2014). [22] S. F. Daniel, R. R. Caldwell, A. Cooray, and A. Melchiorri, Phys. Rev. D 77, 103513 (2008). [23] C. M. Will, Living Rev. Relativity 17, 4 (2014). [24] L. Amendola, S. Fogli, A. Guarnizo, M. Kunz, and A. Vollmer, Phys. Rev. D 89, 063538 (2014). [25] G. Ballesteros, L. Hollenstein, R. K. Jain, and M. Kunz, J. Cosmol. Astropart. Phys. 05 (2012) 038. [26] I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz, Phys. Rev. Lett. 113, 191101 (2014). [27] J. P. Uzan, Living Rev. Relativity 14, 2 (2011). [28] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425, 374 (2003).
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PHYSICAL REVIEW D.pdf
Size:
162.96 KB
Format:
Adobe Portable Document Format

Collections