Operators on vector sequence spaces
dc.book.title | Geometric Aspects of Banach Spaces: Essays in Honour of Antonio Plans | |
dc.contributor.author | Bombal Gordón, Fernando | |
dc.contributor.editor | Martín Peinador, Elena | |
dc.contributor.editor | Rodés, E. | |
dc.date.accessioned | 2023-06-20T21:04:00Z | |
dc.date.available | 2023-06-20T21:04:00Z | |
dc.date.issued | 1989-01 | |
dc.description.abstract | In the following, (∑⊕En)p will denote the p-sum of a sequence of Banach spaces and Πm [resp. Im] are the corresponding canonical projections [resp. injections] onto [from] the coordinate spaces Em for m=1,2,⋯. The aim of the paper is the characterization of operators (continuous and linear) T on (∑⊕En)p in terms of the operators Tn=T∘In. Let F be a Banach space. It is proved that for every operator T:(∑⊕En)p→F, the sequence (Tn) is unique with respect to the following properties: (1) For every y∗∈F∗, (T∗n(y∗))∈(∑⊕E∗n)q with 1p+1q=1. (2) {(T∗n(y∗))∞n=1: y∗∈B(F∗)} is bounded in (∑⊕E∗n)q, where B(F∗) denotes the unit ball in F∗. (3) T(x)=∑∞n=1Tn(xn) for all x=(xn)∈(∑⊕En)p. (4) ∥T∥=sup{∥T∗n(y∗)∥q: y∗∈B(F∗)}. According to the above-mentioned result, if T:(∑⊕En)p→F belongs to some operator ideal I, then Tn∈I for all n=1,2,⋯. Some examples, to show that the converse statement is in general false, are discussed. However, it is then shown that if p=1, the converse holds if I=U (the family of all unconditionally converging operators), I=D (Dieudonné operators) and I=DP (Dunford-Pettis operators). In case of p>1, the converse also holds if I=ω (weakly compact operators). The c0-sum is denoted by E=(∑⊕En)0. In this case it is proved that the above-mentioned results can be sharpened to obtain the following: Let I be a closed operator ideal, contained in U. Then T∈I(E,F) if and only if Tn∈I(En,F) for all n=1,2,⋯, and limm→∞∥∑mn=1Tn∘Πn−T∥=0. The above-mentioned results are applied by the author to: (1) obtain necessary and sufficient conditions for (∑⊕En)p to have (if p=0;1) the Dunford-Pettis property; (if p=0; 1<p<∞) the reciprocal Dunford-Pettis property; (if p=0; 1<p<∞) the Dieudonné property; (if p=0; 1<p<∞) the V-property of Pełczyński; (if 1<p<∞) the Grothendieck property; (2) prove necessary and sufficient conditions for (∑⊕En)p to (if 1<p<∞) have a complemented copy of l1; (if p=1) be a Schur space; be weakly sequentially complete; contain a copy of c0; (if p=0) contain a complemented copy of lp for 1≤p<∞. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19862 | |
dc.identifier.doi | 10.1017/CBO9780511662300.008 | |
dc.identifier.isbn | 9780521367523 | |
dc.identifier.officialurl | http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511662300&cid=CBO9780511662300A013&tabName=Chapter | |
dc.identifier.relatedurl | http://universitypublishingonline.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60599 | |
dc.issue.number | 140 | |
dc.page.final | 106 | |
dc.page.initial | 94 | |
dc.page.total | 194 | |
dc.publication.place | London | |
dc.publisher | Cambridge University Press | |
dc.relation.ispartofseries | London Mathematical Society Lecture Note Series. | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.982.22 | |
dc.subject.keyword | Sequence spaces | |
dc.subject.keyword | Operators on special spaces | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Operators on vector sequence spaces | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isEditorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isEditorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |