Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From general State-Space to VARMAX models

dc.contributor.authorCasals Carro, José
dc.contributor.authorGarcía Hiernaux, Alfredo Alejandro
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-20T09:12:18Z
dc.date.available2023-06-20T09:12:18Z
dc.date.issued2010
dc.description.abstractFixed coecients State-Space and VARMAX models are equivalent, meaning that they are able to represent the same linear dynamics, being indistinguishable in terms of overall fit. However, each representation can be specically adequate for certain uses, so it is relevant to be able to choose between them. To this end, we propose two algorithms to go from general State-Space models to VARMAX forms. The rst one computes the coecients of a standard VARMAX model under some assumptions while the second, which is more general, returns the coecients of a VARMAX echelon. These procedures supplement the results already available in the literature allowing one to obtain the State-Space model matrices corresponding to any VARMAX. The paper also discusses some applications of these procedures by solving several theoretical and practical problems.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/11450
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/48942
dc.issue.number02
dc.language.isoeng
dc.page.total28
dc.publisherFacultad de CC Económicas y Empresariales. Instituto Complutense de Análisis Económico
dc.relation.ispartofseriesDocumentos de trabajo del Instituto Complutense de Análisis Económico
dc.rights.accessRightsopen access
dc.subject.keywordState-Space
dc.subject.keywordVARMAX models
dc.subject.keywordCanonical forms
dc.subject.keywordEchelon.
dc.subject.ucmFinanzas
dc.subject.ucmIndicadores económicos
dc.subject.unesco5302.01 Indicadores Económicos
dc.titleFrom general State-Space to VARMAX models
dc.typetechnical report
dc.volume.number2010
dcterms.referencesAoki, M. (1990). State Space Modelling of Time Series. Springer Verlag, New York. Bujosa, M., García-Ferrer, A., and Young, P. C. (2007). Linear dynamic harmonic regression. Computational Statistics and Data Analysis, 52(2):999-1024. Casals, J., Jerez, M., and Sotoca, S. (2002). An exact multivariate modelbased structural decomposition. Journal of the American Statistical Association, 97(458):553-564. Casals, J., Sotoca, S., and Jerez, M. (1999). A fast and stable method to compute the likelihood of time invariant state space models. Economics Letters, 65(3):329-337. Dickinson, B., Morf, M., and Kailath, T. (1974). Canonical matrix fraction and state space descriptions for deterministic and stochastic linear systems. IEEE Transactions on Automatic Control, AC-19:656-667. Hannan, E. J. and Deistler, M. (1988). The Statistical Theory of Linear Systems.John Wiley, New York. Harvey, A. and Trimbur, T. (2008). Trend estimation and the hodrick-prescottlter. Journal of the Japan Statistical Society, 38:41-49. Harvey, A. C. (1989). Forecasting, structural time series models and the KalmanFilter. Cambridge University Press. Hillmer, S. and Tiao, G. (1982). An arima-model-based approach to seasonaladjustment. Journal of the American Statistical Association, 77:63-70. Luenberger, D. G. (1967). Canonical forms for linear multivariate systems. IEEE Transactions on Automatic Control, AC-12:290-293. Lutkepohl, H. and Poskitt, D. S. (1996). Specication of echelon form VARMA models. Journal of Business and Economic Statistics, 14(1):69-79. Melard, G., Roy, R., and Saidi, A. (2006). Exact maximum likelihood estimation of structured or unit root multivariate time series models. Computational Statistics and Data Analysis, 50,11:2958-2986. Nerlove, M., Grether, D. M., and Carvalho, J. L. (1995). Analysis of Economic Time Series: A Synthesis. Academic Press, New York. Quenouille, M. H. (1957). The Analysis of Multiple Time Series. Grin, London. Rosenbrock, H. H. (1970). State Space and Multivariable Theory. John Wiley, New York. Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford University Press, Oxford.
dspace.entity.typePublication
relation.isAuthorOfPublicationda39222d-0086-4c3a-9421-032f49579d94
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscoveryfdb804b2-ac97-4a0a-bd74-9414c4b86042

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1002.pdf
Size:
216.09 KB
Format:
Adobe Portable Document Format