Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reduced hardness at the onset of plasticity in nanoindented titanium dioxide

dc.contributor.authorNavarro, V.
dc.contributor.authorRodríguez De La Fuente, Óscar
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorRojo Alaminos, Juan Manuel
dc.date.accessioned2023-06-20T10:49:56Z
dc.date.available2023-06-20T10:49:56Z
dc.date.issued2008-12
dc.description© 2008 The American Physical Society. The authors acknowledge financial support from the Comunidad de Madrid Project No. CAM-S-0505/PPQ/0316, from Santander-UCM Project No.PR27/05-13926, and from the Spanish Ministerio de Educación y Ciencia Project No. MAT2006-13149-C02-01.
dc.description.abstractTitanium dioxide rutile crystals have been nanoindented and studied by a combination of atomic force microscopy imaging and analysis of force vs penetration curves. In all the experiments, gold crystals have been used as a reference. A concept of nanoindentation effective volume is introduced to differentiate the bulk behavior from that of a small defect-free volume around the indentation. In the latter volume, a reversible Hertzian elastic stage is identified with a Young modulus comparable to that of the bulk. At higher loads, an incipient plastic range is recognized in which the load is linear on the penetration and permanent traces are left behind at the surface upon tip retraction. In that range, the hardness is constant, about five times smaller than the yield strength and more than three times smaller than the corresponding bulk value. This reduced hardness is explained in terms of the operation of dislocation sources with a low-energy barrier.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSantander-UCM
dc.description.sponsorshipSpanish Ministerio de Educacion y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28304
dc.identifier.doi10.1103/PhysRevB.78.224107
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.78.224107
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51304
dc.issue.number22
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDCAM-S-0505/PPQ/0316
dc.relation.projectIDPR27/05-13926
dc.relation.projectIDMAT2006-13149-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordMechanical-properties
dc.subject.keywordSingle-crystals
dc.subject.keywordIndentation
dc.subject.keywordCeramics
dc.subject.keywordSurfaces
dc.subject.keywordRutile
dc.subject.keywordLoad
dc.subject.ucmFísica de materiales
dc.titleReduced hardness at the onset of plasticity in nanoindented titanium dioxide
dc.typejournal article
dc.volume.number78
dcterms.references1. A. C. Fischer-Cripps, Nanoindentation Springer, New York, 2004. 2. J. D. Kiely and J. E. Houston, Phys. Rev. B 57, 12588 1998. 3. K. J. Hemker and W. N. Sharpe, Jr., Annu. Rev. Mater. Res. 37, 93 2007. 4. B. R. Lawn, J. Am. Ceram. Soc. 81, 1977 1998. 5. Y.-W. Rhee et al., J. Am. Ceram. Soc. 84, 561 2001. 6. P. Gumbsch, S. Taeri-Baghbadrani, D. Brunner, W. Sigle, and M. Ruhle, Phys. Rev. Lett. 87, 085505 2001. 7. B. R. Lawn et al., Science 263, 1114 1994. 8. Z. Peng, J. Gong, and H. Miao, J. Eur. Ceram. Soc. 24, 2193 2004. 9. R. Nakamura et al., J. Am. Chem. Soc. 127, 12975 2005. 10. I. Horcas et al., Rev. Sci. Instrum. 78, 013705 2007. 11. R. J. Cannara, M. J. Bruckman, and R. W. Carpick, Rev. Sci. Instrum. 76, 053706 2005. 12. T. Filleter, S. Maier, and R. Bennewitz, Phys. Rev. B 73, 155433 2006. 13. K. L. Johnson, Contact Mechanics Cambridge University Press, Cambridge, 1985. 14. K. Kurosaki et al., J. Alloys Compd. 386, 261 2005. 15. H. Li and R. C. Bradt, J. Mater. Sci. 28, 917 1993. 16. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 1992. 17. J. Li et al., Nature London 418, 307 2002. 18. A. Asenjo, M. Jaafar, E. Carrasco, and J. M. Rojo, Phys. Rev. B 73, 075431 2006. 19. C. A. Schuh, J. K. Mason, and A. C. Lund, Nature Mater. 4, 617 2005. 20. V. Navarro, O. Rodríguez de la Fuente, A. Mascaraque, and J. M. Rojo, Phys. Rev. Lett. 100, 105504 2008. 21. Sometimes, the concept of hardness is extended to denote the mean pressure in the elastic region; the yield strength is, then, the hardness at the yield point. 22. W. D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 1998. 23. J. Woirgard et al., J. Eur. Ceram. Soc. 18, 2297 1998. 24. M. J. Mayo et al., J. Mater. Res. 5, 1073 1990. 25. G. Feng and W. D. Nix, Scr. Mater. 51, 599 2004. 26. Q. Ma and D. R. Clarke, J. Mater. Res. 10, 853 1995. 27. A. H. Cottrell, Dislocations and Plastic Flow in Crystals Clarendon, Oxford, 1953. 28. T. Scholz et al., Appl. Phys. Lett. 88, 091908 2006. 29. K. Durst et al., Acta Mater. 54, 2547 2006. 30. M. Fujikane et al., J. Alloys Compd. 431, 250 2007. 31. J. G. Swadener, E. P. George, and G. M. Pharr, J. Mech. Phys. Solids 50, 681 2002.
dspace.entity.typePublication
relation.isAuthorOfPublication03516c08-0b94-473c-9082-c2fa885a827d
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication521bf075-e086-457d-9c12-387e350d5e82
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 22libre.pdf
Size:
324 KB
Format:
Adobe Portable Document Format

Collections