Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Where Does the Physics of Extreme Gravitational Collapse Reside?

dc.contributor.authorBarceló, Carlos
dc.contributor.authorCarballo-Rubio, Raúl
dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-18T06:05:17Z
dc.date.available2023-06-18T06:05:17Z
dc.date.issued2016-05-13
dc.description.abstractThe gravitational collapse of massive stars serves to manifest the most severe deviations of general relativity with respect to Newtonian gravity: the formation of horizons and spacetime singularities. Both features have proven to be catalysts of deep physical developments, especially when combined with the principles of quantum mechanics. Nonetheless, it is seldom remarked that it is hardly possible to combine all these developments into a unified theoretical model, while maintaining reasonable prospects for the independent experimental corroboration of its different parts. In this paper we review the current theoretical understanding of the physics of gravitational collapse in order to highlight this tension, stating the position that the standard view on evaporating black holes stands for. This serves as the motivation for the discussion of a recent proposal that offers the opposite perspective, represented by a set of geometries that regularize the classical singular behavior and present modifications of the near-horizon Schwarzschild geometry as the result of the propagation of non-perturbative ultraviolet effects originated in regions of high curvature. We present an extensive exploration of the necessary steps on the explicit construction of these geometries, and discuss how this proposal could change our present understanding of astrophysical black holes and even offer the possibility of detecting genuine ultraviolet effects in gravitational-wave experiments.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipJunta de Andalucía
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65340
dc.identifier.doi10.3390/universe2020007
dc.identifier.issn2218-1997
dc.identifier.officialurlhttps://doi.org/10.3390/universe2020007
dc.identifier.relatedurlhttps://www.mdpi.com/2218-1997/2/2/7
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23863
dc.issue.number2
dc.journal.titleUniverse
dc.language.isoeng
dc.page.initial7
dc.publisherMDPI
dc.relation.projectIDFIS2011-30145-C03-01, FIS2011-30145-C03-02, FIS2014-54800-C2-1 y FIS2014-54800-C2-2
dc.relation.projectIDFQM219
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordblack holes
dc.subject.keywordwhite holes
dc.subject.keywordgravitational collapse
dc.subject.keywordHawking evaporation
dc.subject.keywordmassive stars
dc.subject.keywordquantum gravity
dc.subject.ucmAstrofísica
dc.titleWhere Does the Physics of Extreme Gravitational Collapse Reside?
dc.typejournal article
dc.volume.number2
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
universe-02-00007.pdf
Size:
828.2 KB
Format:
Adobe Portable Document Format

Collections