Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep-learning based positron range correction of PET images

dc.contributor.authorLópez Herraiz, Joaquín
dc.contributor.authorBembibre, Adrián
dc.contributor.authorLópez Montes, Alejandro
dc.date.accessioned2024-02-12T11:41:10Z
dc.date.available2024-02-12T11:41:10Z
dc.date.issued2020-12-29
dc.description.abstractPositron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition.eng
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyInstituto de Física de Partículas y del Cosmos (IPARCOS)
dc.description.refereedTRUE
dc.description.sponsorshipNational Institutes of Health (United States of America)
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.statuspub
dc.identifier.citationHerraiz, J.L.; Bembibre, A.; López-Montes, A. Deep-Learning Based Positron Range Correction of PET Images. Appl. Sci. 2021, 11, 266. https://doi.org/10.3390/app11010266
dc.identifier.doi10.3390/app11010266
dc.identifier.essn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app11010266
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101228
dc.issue.number1
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.final266-13
dc.page.initial266-1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/B2017/BMD-3888 PRONTO-CM
dc.relation.projectIDinfo:eu-repo/grantAgreement/RTI2018-095800-A-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/NIH-R01-CA215700
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu539.1
dc.subject.cdu53:61
dc.subject.keywordPositron Range
dc.subject.keywordNeural network
dc.subject.keywordPositron Emission Tomography
dc.subject.keywordDeep learning
dc.subject.ucmFísica nuclear
dc.subject.ucmProgramación de ordenadores (Física)
dc.subject.unesco2207.20 Radioisótopos
dc.subject.unesco3204.01 Medicina Nuclear
dc.titleDeep-learning based positron range correction of PET images
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationff1ea731-78c3-4e37-a602-13cc8037ae8e
relation.isAuthorOfPublication37cd0210-94b3-4946-8a34-1f54ca978cef
relation.isAuthorOfPublication.latestForDiscoveryff1ea731-78c3-4e37-a602-13cc8037ae8e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4_DEEP-PRC_2021.PDF
Size:
2.78 MB
Format:
Adobe Portable Document Format

Collections