Deep-learning based positron range correction of PET images
dc.contributor.author | López Herraiz, Joaquín | |
dc.contributor.author | Bembibre, Adrián | |
dc.contributor.author | López Montes, Alejandro | |
dc.date.accessioned | 2024-02-12T11:41:10Z | |
dc.date.available | 2024-02-12T11:41:10Z | |
dc.date.issued | 2020-12-29 | |
dc.description.abstract | Positron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition. | eng |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.faculty | Instituto de Física de Partículas y del Cosmos (IPARCOS) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | National Institutes of Health (United States of America) | |
dc.description.sponsorship | Gobierno de España | |
dc.description.sponsorship | Comunidad Autónoma de Madrid | |
dc.description.status | pub | |
dc.identifier.citation | Herraiz, J.L.; Bembibre, A.; López-Montes, A. Deep-Learning Based Positron Range Correction of PET Images. Appl. Sci. 2021, 11, 266. https://doi.org/10.3390/app11010266 | |
dc.identifier.doi | 10.3390/app11010266 | |
dc.identifier.essn | 2076-3417 | |
dc.identifier.officialurl | https://doi.org/10.3390/app11010266 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/101228 | |
dc.issue.number | 1 | |
dc.journal.title | Applied Sciences | |
dc.language.iso | eng | |
dc.page.final | 266-13 | |
dc.page.initial | 266-1 | |
dc.publisher | MDPI | |
dc.relation.projectID | info:eu-repo/grantAgreement/B2017/BMD-3888 PRONTO-CM | |
dc.relation.projectID | info:eu-repo/grantAgreement/RTI2018-095800-A-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH-R01-CA215700 | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 539.1 | |
dc.subject.cdu | 53:61 | |
dc.subject.keyword | Positron Range | |
dc.subject.keyword | Neural network | |
dc.subject.keyword | Positron Emission Tomography | |
dc.subject.keyword | Deep learning | |
dc.subject.ucm | Física nuclear | |
dc.subject.ucm | Programación de ordenadores (Física) | |
dc.subject.unesco | 2207.20 Radioisótopos | |
dc.subject.unesco | 3204.01 Medicina Nuclear | |
dc.title | Deep-learning based positron range correction of PET images | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ff1ea731-78c3-4e37-a602-13cc8037ae8e | |
relation.isAuthorOfPublication | 37cd0210-94b3-4946-8a34-1f54ca978cef | |
relation.isAuthorOfPublication.latestForDiscovery | ff1ea731-78c3-4e37-a602-13cc8037ae8e |
Download
Original bundle
1 - 1 of 1