Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A study on the effect of imbalanced data in tourism recommendation models

dc.contributor.authorFernández Muñoz, Juan José
dc.contributor.authorMoguerza, Javier
dc.contributor.authorMartín Duque, Clara
dc.contributor.authorGómez Bruna, Diana
dc.date.accessioned2024-02-07T09:16:06Z
dc.date.available2024-02-07T09:16:06Z
dc.date.issued2019
dc.description.abstractAbstract Purpose – This paper aims to study the effect of imbalanced data in tourism quality models. It is demonstrated that this imbalance strongly affects the accuracy of tourism prediction models for hotel recommendation. Design/methodology/approach – A questionnaire was used to survey 83,740 clients from hotels between five and two or less stars using a binary logistic model. The data correspond to a sample of 87 hotels from all around the world (120 countries fromAmerica, Africa, Asia, Europe and Australia). Findings – The results of the study suggest that the imbalance in the data affects the prediction accuracy of the models used, especially to the prediction provided by unsatisfied clients, tending to consider them as satisfied customers. Practical implications – In this sense, special attention should be given to unsatisfied clients or, at least, some safeguards to prevent the effect of the imbalance of data should be included in the models. Social implications – In the tourism industry, the strong imbalance between satisfied and unsatisfied customers produces misleading prediction results. This fact could have effects on the quality policy of hoteliers. Originality/value – In this work, focusing on tourism data, it is shown that this imbalance strongly affects the prediction accuracy of the models used, especially to the prediction of the recommendation provided by unsatisfied customers, tending to consider them as satisfied customers; a methodological approach based on the balance of the data set used to build the models is proposed to improve the accuracy of the prediction for unsatisfied customers provided by traditional services quality models.en
dc.description.departmentDepto. de Ciencia Política y de la Administración
dc.description.departmentDepto. de Organización de Empresas
dc.description.facultyFac. de Comercio y Turismo
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationFernández-Muñoz JJ, M. Moguerza J, Martin Duque C, Gomez Bruna D. A study on the effect of imbalanced data in tourism recommendation models. International Journal of Quality and Service Sciences. 2019;11(3):346-56.
dc.identifier.doi10.1108/IJQSS-05-2018-0050
dc.identifier.issn1756-669X
dc.identifier.officialurlhttps://www.doi.org/10.1108/IJQSS-05-2018-0050
dc.identifier.relatedurlhttps://www.emerald.com/insight/publication/issn/1756-669X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99796
dc.issue.number3
dc.journal.titleInternational Journal of Quality and Service Sciences
dc.language.isoeng
dc.page.final356
dc.page.initial346
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsmetadata only access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu640.41
dc.subject.keywordHotels
dc.subject.keywordData
dc.subject.keywordSampling
dc.subject.keywordQuality perception
dc.subject.keywordQuality mangement
dc.subject.ucmCiencias Sociales
dc.subject.ucmPolítica
dc.subject.ucmTurismo
dc.subject.ucmEconomía
dc.subject.unesco59 Ciencia Política
dc.subject.unesco5902.99 Otras
dc.subject.unesco5311 Organización y Dirección de Empresas
dc.subject.unesco5312.90 Economía Sectorial: Turismo
dc.titleA study on the effect of imbalanced data in tourism recommendation modelsen
dc.title.alternativeEstudio sobre el efecto de los datos desequilibrados en los modelos de recomendación turísticaes
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication8158fa42-c840-4dbe-afce-82f82006c738
relation.isAuthorOfPublication0202e3fb-9573-44c9-85f3-ee01d9c19c1a
relation.isAuthorOfPublication.latestForDiscovery0202e3fb-9573-44c9-85f3-ee01d9c19c1a

Download

Collections