Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Concerning ultraparacompact spaces.

dc.contributor.authorGallego Lupiáñez, Francisco
dc.date.accessioned2023-06-20T16:56:59Z
dc.date.available2023-06-20T16:56:59Z
dc.date.issued1993
dc.description.abstractIn this interesting paper a new class of ultraparacompact spaces, the class of so-called (P*) spaces, is introduced and investigated. A zero-dimensional Hausdorff space is called a (P*) space if for every open cover and for every clopen base such that every finite union of elements of the base can be partitioned into elements of the base, there exists a discrete refinement consisting of members of the base. For example, a zero-dimensional dense subspace of Rn is a (P*) space. The authors provide a characterization of the (P*) property and show that every ultraparacompact C-scattered space satisfies property (P*). At the end of the paper some open questions are raised.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16204
dc.identifier.issn0918-4732
dc.identifier.officialurlhttp://qagt.za.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57493
dc.issue.number2
dc.journal.titleQuestions and answers in general topology
dc.page.final152
dc.page.initial145
dc.publisherSymposium of General Topology
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.keywordZero-dimensional space
dc.subject.keywordUltraparacompact spaces
dc.subject.keyword(P*) space
dc.subject.keyword(P*) property
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleConcerning ultraparacompact spaces.
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationd690c2bd-762b-4bd2-a8ba-11c504ad15d5
relation.isAuthorOfPublication.latestForDiscoveryd690c2bd-762b-4bd2-a8ba-11c504ad15d5

Download

Collections