Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Study of the internal morphology of cation-exchange membranes by means of electroosmotic permeability relaxations.

dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorIzquierdo Gil, María Amparo
dc.contributor.authorGodino Gómez, María Paz
dc.contributor.authorGarcía Villaluenga, Juan Pedro
dc.date.accessioned2023-06-20T03:31:35Z
dc.date.available2023-06-20T03:31:35Z
dc.date.issued2009-10-01
dc.description© 2009 American Chemical Society. Financial support from the University Complutense of Madrid under Project No. PR1/08-15918-A is gratefully acknowledged. Professors C. Larchet and V. Nikonenko are gratefully acknowledged for donating MK40 samples
dc.description.abstractThe effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed to the usual dc applied electric voltage difference on the electroosmotic flow through three cation-exchange membranes with different morphology has been studied. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three membranes investigated, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. These characteristic frequency values, which are related to relaxation processes in heterogeneous media, depend on the membrane system and permit to obtain information about the different structures of the membrane system. Thus, the study of the electroosmotic permeability relaxation can be used as a method to study the internal morphology of a cation-exchange membrane in a given electrolyte medium.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity Complutense of Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20512
dc.identifier.doi10.1021/jp903414z
dc.identifier.issn1520-6106
dc.identifier.officialurlhttp://pubs.acs.org/doi/pdf/10.1021/jp903414z
dc.identifier.relatedurlhttp://pubs.acs.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43716
dc.issue.number39
dc.journal.titleJournal Of Physical Chemistry B
dc.language.isoeng
dc.page.final12957
dc.page.initial12952
dc.publisherAmer Chemical Soc
dc.relation.projectIDPR1/08-15918-A
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordAc Perturbation
dc.subject.keywordTransport-Properties
dc.subject.keywordNafion
dc.subject.keywordWater
dc.subject.keywordFlow
dc.subject.keywordElectrokinetics
dc.subject.keywordMicrocapillary
dc.subject.keywordPermeation
dc.subject.keywordBehavior
dc.subject.keywordMethanol.
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleStudy of the internal morphology of cation-exchange membranes by means of electroosmotic permeability relaxations.
dc.typejournal article
dc.volume.number113
dcterms.references(1) Choi, J.-H.; Kim, S.-H.; Moon, S.-H. J. Colloid Interface Sci. 2001, 241, 120. (2) Gnsin, N. P.; Berezina, N. P.; Kononenko, N. A.; Dyomina, O. A., J. Membr. Sci. 2004, 243, 301. (3) She, F. H.; Gao, W. M.; Peng, Z.; Hodgson, P. D.; Kong, L. X., J. Chin. Inst. Chem. Eng. 2008, 39, 313. (4) Le, X. T. J. Colloid Interface Sci. 2008, 325, 215. (5) Chaabane, L.; Bulvestre, G.; Larchet, C.; Nikonenko, V.; Deslouis, C.; Takenouti, H. J. Membr. Sci. 2008, 323, 167. (6) Berezina, N. P.; Kononenko, N. A.; Dyomina, O. A.; Gnusin, N. P. AdV. Colloid Interface Sci. 2008, 139, 3. (7) Coster, H. G. L.; Chilcott, T. C. Surface Chemistry and Electrochemistry of Membranes; Sφrensen, T. S., Ed.; Marcel Dekker, Inc.: New York, 1999; Chapter 19. (8) Zholkovskij, E. K. Surface Chemistry and Electrochemistry of Membranes; Sφrensen, T. S., Ed.; Marcel Dekker, Inc.: New York, 1999; Chapter 20. (9) Zhao, K.; Li, Y. J. Phys. Chem. B 2006, 110, 2755. (10) Sistat, P.; Kozmai, A.; Pismenskaya, N.; Larchet, C.; Pourcelly, G.; Nikonenko, V. Electrochim. Acta 2008, 53, 6380. (11) Sφrensen, T. S. Surface Chemistry and Electrochemistry of Membranes; Sφrensen, T. S., Ed.; Marcel Dekker, Inc.: New York, 1999; Chapter 18. (12) Tsonos, C.; Apekis, L.; Pissis, P. J. Mater. Sci. 2000, 35, 5957. (13) Böttcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization; Elsevier, Ed., 1996, Vol. II. (14) Maxwell, J. C. A Treatise of Electricity and Magnetism; Dover: New York, 1954. (15) Wagner, K. W. Arch. Electrotech. 1914, 2, 371. (16) Wagner, K. W. Arch. Electrotech. 1914, 3, 67. (17) Prigogine, I. Introduction to Thermodynamics of IrreVersible Processes, 3rd ed.; Wiley: New York, 1968. (18) De Groot, S. R. Thermodynamics of IrreVersible Processes, 4th ed.; North Holland Publishing Co.: Amsterdam, 1966. (19) Lakshminarayanaiah, W. Transport Phenomena in Membranes; Academic Press: New York, 1969. (20) Ramos, A.; Morgan, H.; Castellanos, A. J. Phys. D: Appl. Phys. 1998, 31, 2338. (21) Morgan, H.; Green, N. AC Electrokinetics: Colloids and Nanoparticle; Research Studies Press LTd.: Hertfordshire, England, 2003. (22) Wang, D.; Sigurdson, M.; Meinhart, C. D. Exp. Fluids 2005, 38, 1. (23) Barragán, V. M.; Ruiz-Bauzá, C. J. Colloid Interface Sci. 2000, 230, 359. (24) Barragán, V. M.; Ruiz-Bauzá, C. J. Colloid Interface Sci. 2001, 240, 182. (25) Barragán, V. M.; Ruiz-Bauzá, C.; Imaña, J. L. Desalination 2002, 142, 235. (26) Barragán, V. M.; Ruiz-Bauzá, C.; Villaluenga, J.P. G.; Seoane, B. J. Membr. Sci. 2004, 236, 109. (27) Barragán, V. M.; Villaluenga, J. P. G.; Godino, M. P.; Izquierdo Gil, M. A.; Ruiz-Bauzá, C.; Seoane, B. J. Colloid Interface Sci. 2009, 333, 497. (28) Tang, G. Y.; Yang, C.; Chai, J. C.; Gong, H. Q. Int. J. Heat Mass Transfer 2004, 47, 215. (29) Kang, Y.; Yang, C.; Huang, X. Langmuir 2005, 21, 7598. (30) Gagnon, Z. R.; Chang, H. Appl. Phys. Lett. 2009, 94, 024101. (31) Chen, G.; Tallarek, U.; Seide-Morgenstern, A.; Zhang, Y. J. Chromatogr., A 2004, 1044, 287. (32) Bagotzky, V. S. Fundamentals of Electrochemistry; Plenum Press: New York, 1993. (33) Bockris, J. O.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 2000; Vol. 2A. (34) Lobo, V. M. M. Electrolyte Solutions: Literature Data on Thermodynamics and Transport Properties; Coimbra Editora, Lda.: Coimbra, Portugal, 1975. (35) Helfferich, F. Ion-Exchange; McGraw-Hill: New York, 1962. (36) Kuang, W.; Nelson, S. O. J. Colloid Interface Sci. 1997, 193, 242. (37) Mauritz, J. A.; Moore, R. B. Chem. ReV. 2004, 104, 4535. (38) Rollet, A. L.; Diat, O.; Gebel, G. J. Phys. Chem. B 2002, 106, 3033. (39) Rubatat, L.; Rollet, A. a.; Gebel, G.; Diat, O. Macromolecules 2002, 35, 4050. (40) González Caballero, F.; De las Nieves, F. J. J. Membr. Sci. 1983, 16, 225. (41) Barragán, V. M.; Ruiz-Bauzá, C. J. Non-Equilib. Thermodyn. 1997, 22, 374. (42) Bucher, D.; Kuyucak, S. J. Phys. Chem. B 2008, 112, 10786. (43) Moon, M. J.; Jhon, M. S. Bull. Chem. Soc. Jpn. 1986, 59, 1215.
dspace.entity.typePublication
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication7577a695-65ee-44e1-b7aa-8945ac183fb5
relation.isAuthorOfPublication767d7957-0d58-4121-ab42-43d9165389a9
relation.isAuthorOfPublication.latestForDiscoveryd2c307ae-39ce-419e-a520-2e71b0d84e09

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BARRAGÁN5NO.pdf
Size:
257.13 KB
Format:
Adobe Portable Document Format

Collections