Rationality and Brauer group of a moduli space of framed bundles.
dc.contributor.author | Biswas, Indranil | |
dc.contributor.author | Gómez , Tomás L. | |
dc.contributor.author | Muñoz, Vicente | |
dc.date.accessioned | 2023-06-20T03:32:01Z | |
dc.date.available | 2023-06-20T03:32:01Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We prove that the moduli spaces of framed bundles over a smooth projective curve are rational. We compute the Brauer group of these moduli spaces to be zero under some assumption on the stability parameter. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20856 | |
dc.identifier.issn | 1875-158X | |
dc.identifier.officialurl | http://arxiv.org/pdf/1110.0384v2.pdf | |
dc.identifier.relatedurl | http://www.tcms.org.ge/Journals/TMJ/index.html | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43758 | |
dc.journal.title | Tbilisi Mathematical Journal | |
dc.language.iso | eng | |
dc.page.final | 38 | |
dc.page.initial | 31 | |
dc.publisher | Board | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Brauer group | |
dc.subject.keyword | Rationality | |
dc.subject.keyword | Framed bundle | |
dc.subject.keyword | Table bundle. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Rationality and Brauer group of a moduli space of framed bundles. | |
dc.type | journal article | |
dc.volume.number | 4 | |
dcterms.references | V. Balaji, I. Biswas, O. Gabber and D. S. Nagaraj, Brauer obstruction for a universal vector bundle. Comp. Rend. Acad. Sci. Paris 345 (2007), 265–268. I. Biswas, T. G´omez and V. Muñoz, Torelli theorem for the moduli space of framed bundles,Math. Proc. Camb. Phil. Soc. 148 (2010), 409–423. H. U. Boden and K. Yokogawa, Rationality of moduli spaces of parabolic bundles, Jour. London Math. Soc. 59 (1999), 461–478. O. Gabber, Some theorems on Azumaya algebras, in: The Brauer Group, pp. 129–209, Lecture Notes in Math., Vol. 844, Springer, Berlin–New York, 1981. N. Hoffmann, Rationality and Poincar´e families for vector bundles with extra structure on a curve, Int. Math. Res. Not. 2007, no. 3, Art. ID rnm010, 30 pp. N. Hoffmann, Moduli stacks of vector bundles on curves and the King-Schofield rationality proof, in: Cohomological and geometric approaches to rationality problems, pp. 133–148, Progr.Math., 282, Birkhauser Boston, Inc., Boston, MA, 2010. D. Huybrechts and M. Lehn, Framed modules and their moduli, Int. Jour. Math. 6 (1995),297–324. M. Maruyama, Openness of a family of torsion free sheaves, Jour. Math. Kyoto Univ. 16 (1976),627–637. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1