Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Functional coatings enable navigation of light-propelled micromotors in blood for effective biodetoxification

dc.contributor.authorPacheco, Marta
dc.contributor.authorJurado-Sánchez, Beatriz
dc.contributor.authorEscarpa, Alberto
dc.date.accessioned2024-01-17T16:50:48Z
dc.date.available2024-01-17T16:50:48Z
dc.date.issued2021-10-05
dc.description.abstractHerein we report the coating of visible light-driven polycaprolactone (PCL) based micromotors with an anti-biofouling poly lactic-co-glycolic acid (PLGA) layer for effective navigation and detoxification in blood samples. The micromotors encapsulate CdSe@ZnS quantum dots as photoresponsive materials and a Fe3O4 nanoparticle patch to promote electron transfer and reaction with glucose present in the media for diffusiophoretic propulsion in diluted blood. The coating of the micromotor with the PLGA layer prevents red blood cell adhesion and protein adsorption due to the creation of a highly efficient hydration layer. This results in an enhanced speed and efficient operation for enhanced toxin removal as compared with the bare PCL micromotors. Hemolysis and MTT assays along with no platelets aggregation revealed the high biocompatibility of the micromotors with living cells. Effective adsorptive removal of two relevant toxins, sepsis associated Escherichia coli O111:B4 toxin and snake venom α-bungarotoxin from blood is achieved with the PLGA micromotors. The new developments illustrated here represent one step forward in the use of light-driven micromotors for biomedical applications.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Economy, Industry and Competitiveness
dc.description.sponsorshipSpanish Ministry of Education and Universities
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipCommunity of Madrid
dc.description.statuspub
dc.identifier.citation4. M. Pacheco, B. Jurado-Sánchez*, A. Escarpa*. Functional coating enable navigation of light-propelled micromotors in blood for effective biodetoxification. Nanoscale, 2021, 13, 17106-17115.
dc.identifier.doi10.1039/d1nr04842b
dc.identifier.essn2040-3372
dc.identifier.issn2040-3364
dc.identifier.officialurlhttps://doi.org/10.1039/d1nr04842b
dc.identifier.urihttps://hdl.handle.net/20.500.14352/93670
dc.journal.titleNanoscale
dc.language.isoeng
dc.page.final17115
dc.page.initial17106
dc.publisherRoyal Society Chemistry
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/RYC-2015-17558
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/CTQ2017-86441-C2-1-R
dc.relation.projectIDinfo:eu-repo/grantAgreement/FPU 16/02211
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2020-118154GB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/JIN/2019-007
dc.relation.projectIDinfo:eu-repo/grantAgreement/S2018/NMT-4349
dc.rights.accessRightsrestricted access
dc.subject.ucmQuímica
dc.subject.unesco23 Química
dc.titleFunctional coatings enable navigation of light-propelled micromotors in blood for effective biodetoxification
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscale, 2021, 13, 17106.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
Herein we report the coating of visible light-driven polycaprolactone (PCL) based micromotors with an anti-biofouling poly lactic-co-glycolic acid (PLGA) layer for effective navigation and detoxification in blood samples. The micromotors encapsulate CdSe@ZnS quantum dots as photoresponsive materials and a Fe3O4 nanoparticle patch to promote electron transfer and reaction with glucose present in the media for diffusiophoretic propulsion in diluted blood. The coating of the micromotor with the PLGA layer prevents red blood cell adhesion and protein adsorption due to the creation of a highly efficient hydration layer. This results in an enhanced speed and efficient operation for enhanced toxin removal as compared with the bare PCL micromotors. Hemolysis and MTT assays along with no platelets aggregation revealed the high biocompatibility of the micromotors with living cells. Effective adsorptive removal of two relevant toxins, sepsis associated Escherichia coli O111:B4 toxin and snake venom α-bungarotoxin from blood is achieved with the PLGA micromotors. The new developments illustrated here represent one step forward in the use of light-driven micromotors for biomedical applications.

Collections