Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From nucleation to large aggregates: the growth of filamentary

dc.book.titleProgress in industrial mathematics at ECMI 2000
dc.contributor.authorHerrero, Miguel A.
dc.contributor.editorAnile, Angelo Marcello
dc.contributor.editorCapasso, Vincenzo
dc.contributor.editorGreco, Antonio
dc.date.accessioned2023-06-20T21:07:45Z
dc.date.available2023-06-20T21:07:45Z
dc.date.issued2002
dc.descriptionPapers from the 11th European Conference on Mathematics in Industry held in Palermo, September 26–30, 2000
dc.description.abstractWe shall briefly review some early nucleation models, and then examine some aspects of the subsequent evolution of their solutions. Such situation is characterised by the onset of comparatively large clusters that can diffuse into the medium and interact among themselves. We next discuss some situations where the aggregates being formed, whose actual shape is one of the major questions under consideration, do posses a filamentary nature, and can sometimes generate a percolating network. Finally, a particularly interesting case of such tree-like structures, that of vascular systems, will be addressed, and some facts (and open questions) concerning their simulation via reaction-diffusion equations will be discussed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22583
dc.identifier.doi10.1007/978-3-662-04784-2_2
dc.identifier.isbn978-3-642-07647-3
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F978-3-662-04784-2_2#
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60760
dc.issue.number1
dc.page.final27
dc.page.initial16
dc.page.total666
dc.publication.placeBerlin
dc.publisherSpringer
dc.relation.ispartofseriesMathematics in Industry : The European Consortium for Mathematics in Industry
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.956.4
dc.subject.cdu519.87
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1207 Investigación Operativa
dc.titleFrom nucleation to large aggregates: the growth of filamentary
dc.typebook part
dcterms.referencesAndreucci, D., Herrero, M.A. and Velázquez, J.J.L. (2001) The classical one-phase Stefan problem: a catalogue of interface behaviours. To appear in Surveys on Mathematics in Industry. Andreucci, D., Herrero, M.A. and Velázquez, J.J.L. On the growth of filamentary planar structures. To appear. Boal, A.K., Ilhan, F., De Rouchey, J., Albrecht, T.T., Russell, T.P. and Rotello, V.M. (2000) Self assembly of nanoparticles into structured spherical and network aggregates. Nature, 404, 746–748. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. and Penn, R.L. (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751–754. Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Rev. Modern Physics, 15, 1, 1–91. Escobedo, M., Herrero, M.A. and Velázquez, J.J.L. (2000) Radiation dynamics in homogeneous plasma. Physica D, 126, 236–260. Flory, P. (1941) Molecular size distribution in three dimensional problems: I Gellation. J. Am. Chem. Soc., 63, 3083–3090. Gierer, A. and Meinhardt, H. (1972) A theory of biological pattern formation. Kybernetik, 12, 30–39. Herrero, M.A., Velázquez, J.J.L and Wrzosek, D. (2000) Sol-gel transition in a coagulation-difussion model. Physica D, 141, 221–247. Luckhaus, S. (1991) The Stefan problem with the Gibbs-Thomson relation for the melting temperature. Europ. J. Appl. Math., 1, 101–111. Lifshitz, I.M. and Slyozov, V.V. (1961) Kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Sol., 19, 35–50. Leyvraz, F. and Tschudi, H.R. (1981) Singularities in the kinetics of coagulation processes. J. Phys. A, 14, 3389–3405. Meinhardt, H. (1982) Models of biological pattern formation. Academic Press. Meinhardt, H. (1976) Morphogenesis of lines and nets. Differentiation, 6, 117–123. Meinhardt, H. (1997) Biological pattern formation as a complex dynamic phenomenon. Int. J. Bifurcation and Chaos, 7, 1, 1–26. McLeod, J.B. (1962) On an infinite set of nonlinear differential equations. Quart. J. Math. Oxford 2, 119–128. Metzger, R.J. and Krasnow, M.A. (1999) Genetic control of branching morphogenesis. Science, 284, 1635–1639. Niethammer, B. and Pego, R.L. (1999) Non self-similar behaviour in the LSW theory of Ostwald ripening. J. Stat. Phys., 95, 867–902. Pelcé, P. (ed.) (1988) Dynamics of curved fronts. Perspectives in Physics, Academic Press. Peng, G., Quiu, F., Guinzburg, V.V., Jasnow, D. and Balasz, A.C. (2000) Forming supramolecular networks from nanoscale rods in binary, phase-separating mixtures. Science, 288, 1802–1804. Smoluchowski, M. (1916) Drei Vorträge über Diffusion, Brownische Bewegung und Koagulation von Kolloiden. Physik Z, 17, 557–585. Turing, A.M. (1952) The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London B, 237, 37–72. Velázquez, J.J.L. (1998) The Becker-Döring equations and the Lifshitz-Slyozov theory. J. Stat. Phys., 92, 195–236. Velázquez, J.J.L. (2000) On the effect of stochastic fluctuations in the dynamics of the Lifshitz-Slyozov-Wagner model. J. Stat. Phys., 99, 57–113. Wales, D.J. and Scheraga, H.A. (1999) Global optimization of clusters, crystals and biomolecules. Science, 285, 1368–1372. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.
dspace.entity.typePublication

Download