Machine learning and fuzzy measures: a real approach to individual classification
dc.conference.date | September 4–8, 2023 | |
dc.conference.place | Palma de Mallorca | |
dc.conference.title | Fuzzy Logic and Technology, and Aggregation Operators - 13th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2023, and 12th International Summer School on Aggregation Operators, AGOP 2023, Proceedings | |
dc.contributor.author | Gutiérrez García-Pardo, Inmaculada | |
dc.contributor.author | Santos, Daniel | |
dc.contributor.author | Castro Cantalejo, Javier | |
dc.contributor.author | Hernández-Gonzalo, Julio Alberto | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Espínola Vílchez, María Rosario | |
dc.date.accessioned | 2024-09-03T07:28:07Z | |
dc.date.available | 2024-09-03T07:28:07Z | |
dc.date.issued | 2023 | |
dc.description | Colección de libros: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (14069 LNCS) | |
dc.description.abstract | In the field of machine learning, a crucial task is understanding the relative importance of the different input features in a predictive model. There is an approach in the literature whose aim is to analyze the predictive capacity of some features with respect to others. Can we explain a feature of the input space with others? Can we quantify this capacity? We propose a practical approach for analyzing the importance of features in a model and the explanatory capacity of some features over others. It is based on the adaptation of existing definitions from the literature that use the Shapley value and fuzzy measures. Our new approach aims to facilitate the understanding and application of these concepts by starting from a simple idea and considering well known methods. The main objective of this work is to provide a useful and practical approach for analyzing feature importance in real world cases. | |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Gobierno de España. Secretaría de Estado de Investigacion, Desarrollo e Innovacion | |
dc.description.status | pub | |
dc.identifier.citation | Gutiérrez, I. et al. (2023) «Machine Learning and Fuzzy Measures: A Real Approach to Individual Classification», en Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH, pp. 137-148. Disponible en: https://doi.org/10.1007/978-3-031-39965-7_12 | |
dc.identifier.doi | 10.1007/978-3-031-39965-7_12 | |
dc.identifier.essn | 1611-3349 | |
dc.identifier.isbn | 9783031399640 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.officialurl | https://doi.org/10.1007/978-3-031-39965-7_12 | |
dc.identifier.relatedurl | https://link.springer.com/chapter/10.1007/978-3-031-39965-7_12 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/107836 | |
dc.language.iso | eng | |
dc.page.final | 148 | |
dc.page.initial | 137 | |
dc.relation.projectID | PID2020-116884GB-I00 | |
dc.relation.projectID | PID2021-122905NB-C21 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | restricted access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 004.6 | |
dc.subject.cdu | 519.2 | |
dc.subject.keyword | Explainable Artificial Intelligence | |
dc.subject.keyword | Features Importance | |
dc.subject.keyword | Fuzzy Measures | |
dc.subject.keyword | Machine Learning | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.ucm | Estadística | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.subject.unesco | 1209 Estadística | |
dc.subject.unesco | 1209.03 Análisis de Datos | |
dc.subject.unesco | 1209.14 Técnicas de Predicción Estadística | |
dc.title | Machine learning and fuzzy measures: a real approach to individual classification | |
dc.type | conference paper | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2f4cd183-2dd2-4b4e-8561-9086ff5c0b90 | |
relation.isAuthorOfPublication | e556dae6-6552-4157-b98a-904f3f7c9101 | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 843bc5ed-b523-401d-98ed-6cb00a801c31 | |
relation.isAuthorOfPublication.latestForDiscovery | 2f4cd183-2dd2-4b4e-8561-9086ff5c0b90 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Machinelearningandfuzzymeasures.pdf
- Size:
- 564.02 KB
- Format:
- Adobe Portable Document Format