Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning and fuzzy measures: a real approach to individual classification

dc.conference.dateSeptember 4–8, 2023
dc.conference.placePalma de Mallorca
dc.conference.titleFuzzy Logic and Technology, and Aggregation Operators - 13th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2023, and 12th International Summer School on Aggregation Operators, AGOP 2023, Proceedings
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorSantos, Daniel
dc.contributor.authorCastro Cantalejo, Javier
dc.contributor.authorHernández-Gonzalo, Julio Alberto
dc.contributor.authorGómez González, Daniel
dc.contributor.authorEspínola Vílchez, María Rosario
dc.date.accessioned2024-09-03T07:28:07Z
dc.date.available2024-09-03T07:28:07Z
dc.date.issued2023
dc.descriptionColección de libros: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (14069 LNCS)
dc.description.abstractIn the field of machine learning, a crucial task is understanding the relative importance of the different input features in a predictive model. There is an approach in the literature whose aim is to analyze the predictive capacity of some features with respect to others. Can we explain a feature of the input space with others? Can we quantify this capacity? We propose a practical approach for analyzing the importance of features in a model and the explanatory capacity of some features over others. It is based on the adaptation of existing definitions from the literature that use the Shapley value and fuzzy measures. Our new approach aims to facilitate the understanding and application of these concepts by starting from a simple idea and considering well known methods. The main objective of this work is to provide a useful and practical approach for analyzing feature importance in real world cases.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España. Secretaría de Estado de Investigacion, Desarrollo e Innovacion
dc.description.statuspub
dc.identifier.citationGutiérrez, I. et al. (2023) «Machine Learning and Fuzzy Measures: A Real Approach to Individual Classification», en Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH, pp. 137-148. Disponible en: https://doi.org/10.1007/978-3-031-39965-7_12
dc.identifier.doi10.1007/978-3-031-39965-7_12
dc.identifier.essn1611-3349
dc.identifier.isbn9783031399640
dc.identifier.issn0302-9743
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-39965-7_12
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-031-39965-7_12
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107836
dc.language.isoeng
dc.page.final148
dc.page.initial137
dc.relation.projectIDPID2020-116884GB-I00
dc.relation.projectIDPID2021-122905NB-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.6
dc.subject.cdu519.2
dc.subject.keywordExplainable Artificial Intelligence
dc.subject.keywordFeatures Importance
dc.subject.keywordFuzzy Measures
dc.subject.keywordMachine Learning
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209 Estadística
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco1209.14 Técnicas de Predicción Estadística
dc.titleMachine learning and fuzzy measures: a real approach to individual classification
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication843bc5ed-b523-401d-98ed-6cb00a801c31
relation.isAuthorOfPublication.latestForDiscovery2f4cd183-2dd2-4b4e-8561-9086ff5c0b90

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Machinelearningandfuzzymeasures.pdf
Size:
564.02 KB
Format:
Adobe Portable Document Format