Approximation in compact Nash manifolds
dc.contributor.author | Coste, M. | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.contributor.author | Shiota, Masahiro | |
dc.date.accessioned | 2023-06-20T17:11:44Z | |
dc.date.available | 2023-06-20T17:11:44Z | |
dc.date.issued | 1995-08 | |
dc.description.abstract | Let Ω⊂Rn be a compact Nash manifold; A,B the rings of Nash, analytic global functions on Ω. The main result of this paper is the following: Theorem 1. Let Ω,Ω′ be a pair of Nash submanifolds of some Rn ,Rq and let us suppose Ω is compact. Let F1,⋯,Fq:Ω×Ω′→R be Nash functions. Then every analytic solution y=f(x) of the system F1(x,y)=⋯=Fq(x,y)=0 can be approximated, in the Whitney topology, by the global Nash solutions y=g(x). The main tool used to prove the above results is this version of Néron's desingularisation theorem: Any homomorphism of A-algebras C→B, with C finitely generated over A, factorizes through a finitely generated A-algebra D such that A→D is regular. Using Theorem 1 the authors are able to solve several interesting problems that have been open for many years. For example they prove: (I) Every analytic factorization of a global Nash function, defined over Ω, is equivalent to a Nash factorization. (II) Every semialgebraic subset of Ω which is a global analytic subset is also a global Nash subset. (III) Every prime ideal of A generates a prime ideal in B. (IV) Every coherent ideal subsheaf of the sheaf N(Ω) of Nash functions on Ω is generated by its global sections. The case where Ω is noncompact is only partially studied in this paper. In the reviewer's opinion this article makes crucial progress in the theory of global Nash functions. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19997 | |
dc.identifier.doi | 10.2307/2374953 | |
dc.identifier.issn | 0002-9327 | |
dc.identifier.officialurl | http://www.jstor.org/stable/10.2307/2374953 | |
dc.identifier.relatedurl | http://www.jstor.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57924 | |
dc.issue.number | 4 | |
dc.journal.title | American Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 927 | |
dc.page.initial | 905 | |
dc.publisher | Johns Hopkins Univ Press | |
dc.relation.projectID | PB92-0498-C02-02 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 510.22 | |
dc.subject.cdu | 515.171.5 | |
dc.subject.keyword | Real nullstellensatz | |
dc.subject.keyword | extension theorem | |
dc.subject.keyword | sets | |
dc.subject.keyword | Nash manifold | |
dc.subject.keyword | global analytic functions | |
dc.subject.keyword | Nash functions | |
dc.subject.keyword | Néron desingularization | |
dc.subject.keyword | approximation theorem | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Teoría de conjuntos | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1201.02 Teoría Axiomática de Conjuntos | |
dc.title | Approximation in compact Nash manifolds | |
dc.type | journal article | |
dc.volume.number | 117 | |
dcterms.references | C. Andradas, L. Bröcker, and J. M. Ruiz, Minimal generation of basic open semialgebraic sets, Invent. Math. 92 (1988), 409-430. C. Andradas, L. Bröcker, and J. M. Ruiz , Constructible sets in real geometry, in preparation. M. André, Cinq exposés sur la désingularization, preprint, 1991. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-29 1. M. Artin Algebraic approximations of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58. M. Artin and B. Mazur, On periodic points, Ann. of Math. 81 (1965), 82-99. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), 89-102. J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb., vol. 12, Springer-Verlag, New York, 1987. J. Bochnak and G. Efroymson, An introduction to Nash functions, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer-Verlag, New York, 1982, pp. 41-54. J. Bochnak and W. Kucharz, Local algebraicity of analytic sets, J. Reine. Angew. Math. 352 (1984), 1-14. J.-L. Colliot-Thélène, Variantes du Nullstellensatz réel et anneaux formellement réels, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer- Verlag, New York, 1982, 98-108. M. Coste, J. M. Ruiz, and M. Shiota, Equivalence of important problems on Nash functions, in preparation. G. Efroymson, Nash rings in planar domains, Trans. Amer Math. Soc. 249 (1979), 435-445. G. Efroymson, The extension theorem for Nash functions, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer-Verlag, New York, 1982, pp. 343- 357. J. Hubbard, On the cohomology of Nash sheaves, Topology 11 (1972), 265-270. H. Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Series, vol. 56, Benjamin, Read ing, MA, 1980. J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421. D. Pecker, On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra 37 (1985), 193-203. D. Popescu, General Néron desingularization, Nagoya Math. J. 100 (1985), 97-126. J. M. Ruiz, On Hilbert's 17th problem and real Nullstellensatz for global analytic functions, Math. Z. 190 (1985), 447-459. J. M. Ruiz, On the real spectrum of a ring of global analytic functions, Publ. Inst. Recherche Math. Rennes 4 (1986), 84-95. J. M. Ruiz and M. Shiota, On global Nash functions, Ann. Sci. École Norm. Sup. (to appear). M. Shiota, Nash manifolds, Lecture Notes in Math., vol. 1269, Springer-Verlag, New York, 1987. M. Shiota, Extension et factorisation de fonctions de Nash C∞, C. R. Acad. Sci. Paris Ser I Math. 308 (1989), 253-256. M. Spivakovski, Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture, preprint, 1992. A. Tancredi and A. Tognoli, On the extension of Nash functions, Math. Ann. 288 (1990), 595-604. A. Tognoli, Algebraic geometry and Nash functions, Institutiones Math., vol. 3, Academic Press, New York, 1978. J.-C. Tougeron, Ideaux de fonctions differentiables, Ergeb. Math., vol. 71, Springer-Verlag, New York, 1972. 0. Zariski and P. Samuel, Commutative Algebra I, Graduate Texts in Math., vol. 98, Springer-Verlag, New York, 1979. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1