Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot

dc.contributor.authorLobov, Sergey
dc.contributor.authorMikhailov, Alexey N.
dc.contributor.authorShamshin, Maxim
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorKazantsev, Victor B.
dc.date.accessioned2026-01-14T15:51:24Z
dc.date.available2026-01-14T15:51:24Z
dc.date.issued2020
dc.description.abstractDevelopment of spiking neural networks (SNNs) controlling mobile robots is one of the modern challenges in computational neuroscience and artificial intelligence. Such networks, being replicas of biological ones, are expected to have a higher computational potential than traditional artificial neural networks (ANNs). The critical problem is in the design of robust learning algorithms aimed at building a “living computer” based on SNNs. Here, we propose a simple SNN equipped with a Hebbian rule in the form of spike-timing-dependent plasticity (STDP). The SNN implements associative learning by exploiting the spatial properties of STDP. We show that a LEGO robot controlled by the SNN can exhibit classical and operant conditioning. Competition of spike-conducting pathways in the SNN plays a fundamental role in establishing associations of neural connections. It replaces the irrelevant associations by new ones in response to a change in stimuli. Thus, the robot gets the ability to relearn when the environment changes. The proposed SNN and the stimulation protocol can be further enhanced and tested in developing neuronal cultures, and also admit the use of memristive devices for hardware implementation.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipRussian Science Foundation
dc.description.sponsorshipRussian Foundation for Basic Research
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.statuspub
dc.identifier.doi10.3389/fnins.2020.00088
dc.identifier.officialurlhttps://doi.org/10.3389/fnins.2020.00088
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130236
dc.issue.number88
dc.journal.titleFrontiers in Neuroscience
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.projectIDproject 19-12-00394
dc.relation.projectIDgrant 18-29-23001
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82900-P/ES/LA COMPACTACION DEL TIEMPO EN EL PROCESAMIENTO DE SITUACIONES DINAMICAS COMO FENOMENO BIOFISICO UNIFICADOR DE LA COGNICION PRIMORDIAL EN HUMANOS Y ROBOTS/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordLearning
dc.subject.keywordMemristive devices
dc.subject.keywordNeural competition
dc.subject.keywordNeuroanimat
dc.subject.keywordNeurorobotics
dc.subject.keywordSpike-timing-dependent plasticity
dc.subject.keywordSpiking neural networks
dc.subject.keywordSynaptic competition,
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSpatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
FrontNeurosci_2020.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Data Sheet 1.pdf
Size:
351.82 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Video 3.AVI
Size:
3.01 MB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
Video 2.AVI
Size:
3.76 MB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
Video 1.AVI
Size:
7.05 MB
Format:
Unknown data format

Collections