Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On representations of 2-bridge knot groups in quaternion algebras II: The case of the Trefoil knot group

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-19T13:21:37Z
dc.date.available2023-06-19T13:21:37Z
dc.date.issued2013-01
dc.description.abstractThe complete classification of representations of the Trefoil knot group G in S3 and SL(2, ℝ), their affine deformations, and some geometric interpretations of the results, are given. Among other results, we also obtain the classification up to conjugacy of the noncyclic groups of affine Euclidean isometries generated by two isometries μ and ν such that μ2 = ν3 = 1, in particular those which are crystallographic. We also prove that there are no affine crystallographic groups in the three-dimensional Minkowski space which are quotients of G.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21530
dc.identifier.doi10.1142/S0218216512501404
dc.identifier.issn0218-2165
dc.identifier.officialurlhttp://www.worldscientific.com/doi/abs/10.1142/S0218216512501404
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33299
dc.issue.number1
dc.journal.titleJournal Of Knot Theory And Its Ramifications
dc.publisherWorld Scientific PublCo
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.162.8
dc.subject.keywordQuaternion algebra
dc.subject.keywordrepresentation
dc.subject.keywordknot group
dc.subject.keywordcrystallographic group
dc.subject.ucmGrupos (Matemáticas)
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn representations of 2-bridge knot groups in quaternion algebras II: The case of the Trefoil knot group
dc.typejournal article
dc.volume.number22
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Collections